Tính:
H= \(\frac{1}{3}\)+ \(\frac{1}{9}\)+ \(\frac{1}{18}\)+ \(\frac{1}{30}\)+ \(\frac{1}{45}\)+ \(\frac{1}{63}\)+...+ \(\frac{1}{14850}\).
Tính nhanh tổng \(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)
\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)
\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Vậy S = \(\frac{99}{100}:\frac{3}{2}\) = \(\frac{33}{50}\)
S=\(\frac{1}{3}\) +\(\frac{1}{9}\)+\(\frac{1}{18}\)+\(\frac{1}{30}\) +\(\frac{1}{45}\) +\(\frac{1}{63}\) +....+\(\frac{1}{14850}\)
Tính S rồi so sánh S với \(\frac{3}{5}\)
S=\(\frac{1}{3}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\right)\)
S=\(\frac{1}{3}.2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
S=\(\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
S=\(\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
\(\frac{33}{50}>\frac{30}{50}=\frac{3}{5}->S>\frac{3}{5}\)
D=\(\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}......+\frac{1}{3675}\)
HELP ME!
1) Tính :
a) A = ( \(1-\frac{1}{2}\) ) + ( \(1-\frac{1}{4}\) ) + ( \(1-\frac{1}{8}\) ) + .......+ ( \(1-\frac{1}{512}\) ) + ( \(1-\frac{1}{1024}\) )
b) B = ( \(\frac{5^3}{6}+\frac{5^3}{12}+\frac{5^3}{20}+\frac{5^3}{42}+\frac{5^3}{56}+\frac{5^3}{72}+\frac{5^3}{90}\) ) : \(\frac{1124.2247-1123}{1124+1123.2247}\)
c) C = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+......+\frac{1}{14850}\)
b) Đặt B = A : C ta có:
\(A=\frac{5^3}{6}+\frac{5^3}{12}+\frac{5^3}{20}+\frac{5^3}{42}+\frac{5^3}{56}+\frac{5^3}{72}+\frac{5^3}{90}\)
\(A=5^3.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=5^3.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=5^3.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=\frac{5^3.2}{5}\)
\(A=5^2.2\)
\(\Rightarrow A=50\)
\(C=\frac{1124.2247-1123}{1124+1123.2247}\)
\(C=\frac{\left(1123+1\right).2274-1123}{1123.2247+1124}\)
\(C=\frac{1123.2247-2247-1123}{1123.2247+1124}\)
\(C=\frac{1123.2247+1124}{1123.2247+1124}=1\)
\(\Rightarrow B=50:1=50\)
Vậy B = 50
Ai tính Giúp em với
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{570}\)
A=1/3 + 1/9 + 1/18 + 1/30 + 1/45 + ... + 1/570
= 1/3(1 + 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/190)
=2/3(3/2 + 1/6 + 1/12 + 1/20 + 1/30 + .... + 1/380)
=2/3(3/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/19 + 1/20)
=2/3(3/2+1/2-1/20)
=2/3.39/20
=13/10
\(\left[\frac{45\frac{10}{63}-44\frac{25}{84}}{\left(2\frac{1}{3}-1\frac{1}{9}\right):4-\frac{3}{4}}:31\right]x=\frac{-1}{16}\)
\(\Rightarrow\left(\frac{\frac{31}{36}}{\frac{11}{9}:4-\frac{3}{4}}:31\right).x=\frac{-1}{16}\Rightarrow\left(\frac{\frac{31}{36}}{\frac{-4}{9}}:31\right)x=-\frac{1}{16}\Rightarrow\left(-\frac{31}{16}:31\right)x=-\frac{1}{16}\Rightarrow-\frac{1}{16}x=-\frac{1}{16}\Rightarrow x=1\)
Tìm x, biết : \(\left[\frac{45\frac{10}{63}-44\frac{25}{84}}{\left(2\frac{1}{3}-1\frac{1}{9}\right):4-\frac{3}{4}}:31\right].x=-\frac{1}{16}\)
A=\(\frac{10-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{10}{18}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{90}}\)
Kiểm tra bài : Nhân, chia số hữu tỉ
Thực hiện phép tính :
(1) \(-\frac{3}{2}.\frac{7}{10}=\frac{-3.7}{2.10}=\frac{-21}{20}\)
(2) \(\frac{-5}{3}.\frac{6}{11}=\frac{-5.6}{3.11}=\frac{-30}{33}\)
(3) \(2\frac{1}{3}.\left(-1\frac{2}{3}\right)=\frac{7}{3}.\left(-\frac{5}{3}\right)=\frac{7.\left(-5\right)}{3.3}=-\frac{35}{9}\)
(4) \(\frac{9}{10}:\left(-\frac{15}{11}\right)=\frac{9}{10}.\left(\frac{-11}{15}\right)=\frac{9.\left(-11\right)}{10.15}=-\frac{99}{150}=-\frac{33}{50}\)
(5) \(\left(-1\right):\frac{3}{8}=\frac{\left(-1\right).8}{3}=-\frac{8}{3}\)
(6) \(\frac{1}{2}.\left(-\frac{5}{4}\right).\frac{8}{7}=\frac{1.\left(-5\right)}{2.4}.\frac{8}{7}=-\frac{5}{8}.\frac{8}{7}=-\frac{5.8}{8.7}=-\frac{5}{7}\)
(7) \(\frac{-9}{2}.\frac{2}{18}.\frac{1}{7}=\left(-\frac{9}{2}.\frac{2}{18}\right).\frac{1}{7}=\left(-\frac{9.2}{2.18}\right).\frac{1}{7}=-\frac{18}{36}.\frac{1}{7}=-\frac{18.1}{36.7}=-\frac{1}{14}\)
(8) \(\left(\frac{9}{2}-\frac{1}{3}\right).\frac{6}{17}=\left(\frac{27}{6}-\frac{2}{6}\right).\frac{6}{17}=\frac{27-2}{6}.\frac{6}{17}=\frac{25}{6}.\frac{6}{17}=\frac{25.6}{6.17}=\frac{25}{17}\)
(9) \(\left(-\frac{12}{13}:\frac{36}{39}\right).\frac{3}{5}=\left(-\frac{12}{13}.\frac{39}{36}\right).\frac{3}{5}=\left(\frac{-12.39}{13.36}\right).\frac{3}{5}=-\frac{1.3}{5}=-\frac{3}{5}\)
(10) \(\left(-\frac{3}{7}+\frac{7}{9}\right):\frac{4}{7}+\left(-\frac{4}{7}+\frac{2}{9}\right):\frac{4}{7}=\left(\left(-\frac{3}{7}+\frac{7}{9}\right)+\left(-\frac{4}{7}+\frac{2}{9}\right)\right):\frac{4}{7}\)
\(=\left(\left(-\frac{27}{63}+\frac{49}{63}\right)+\left(-\frac{36}{63}+\frac{14}{63}\right)\right):\frac{4}{7}=\left(\left(-\frac{27+49}{63}\right)+\left(\frac{-36+14}{63}\right)\right):\frac{4}{7}\)
\(=\left(\left(\frac{22}{63}\right)+\left(-\frac{22}{63}\right)\right):\frac{4}{7}\)
\(=\frac{22+\left(-22\right)}{63}:\frac{4}{7}=\frac{0}{63}:\frac{4}{7}=0\)
Mình đăng các bài toán này lên thứ nhất là để kiểm tra năng lực thứ hai các bạn có thể xem đây và rút ra lời giải cho các bài khác và nếu mình sai chỗ nào các bạn chỉ mình sẽ chỉnh