Những câu hỏi liên quan
dinh thi tuyet hong
Xem chi tiết
Vô Danh
15 tháng 3 2016 lúc 20:14

\(4\left(x^2+y^2+z^2-xy-yz-zx\right)=2\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Tuwf ddos suy ra x-y=y-z=z-x=0

duc cuong
Xem chi tiết
kobikdau
Xem chi tiết
nguyễn minh quý
Xem chi tiết
Thắng Nguyễn
22 tháng 7 2017 lúc 10:20

Áp dụng BĐT AM-GM ta có:

\(\frac{\left(y+z\right)\sqrt{yz}}{x}\ge\frac{2\sqrt{yz}\cdot\sqrt{yz}}{x}=\frac{2\sqrt{\left(yz\right)^2}}{x}=\frac{2yz}{x}\)

Tương tự cho 2 BĐT còn lại ta cũng có

\(\frac{\left(x+y\right)\sqrt{xy}}{z}\ge\frac{2xy}{z};\frac{\left(x+z\right)\sqrt{xz}}{y}\ge\frac{2xz}{y}\)

\(\Leftrightarrow\frac{\left(y+z\right)\sqrt{yz}}{x}+\frac{\left(x+y\right)\sqrt{xy}}{z}+\frac{\left(x+z\right)\sqrt{xz}}{y}\ge\frac{2xy}{z}+\frac{2yz}{x}+\frac{2xz}{y}\)

Cần chứng minh \(\frac{2xy}{z}+\frac{2yz}{x}+\frac{2xz}{y}\ge2\left(x+y+z\right)\)

\(\Leftrightarrow\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\)

Áp dụng BĐT AM-GM:

\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2\sqrt{y^2}=2y\)

Tương tự rồi cộng theo vế ta có ĐPCM

Khi \(x=y=z\)

super xity
Xem chi tiết
Experiment Channel
Xem chi tiết
super xity
Xem chi tiết
nguyễn thị thúy hằng
31 tháng 10 2015 lúc 12:18

(2x - 3y)2 - 2(3y - 2x) = (3y - 2x)(3y -2x - 2)

Mạch Vy Khánh
Xem chi tiết
ST
25 tháng 6 2018 lúc 10:09

x2+y2+z2=xy+yz+zx

<=>2(x2+y2+z2)=2(xy+yz+zx)

<=>2x2+2y2+2z2=2xy+2yz+2zx

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0

<=>(x-y)2+(y-z)2+(z-x)2=0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow x=y=z}\)(đpcm)

Nguyễn Minh Quý
Xem chi tiết
Akai Haruma
21 tháng 7 2017 lúc 23:19

Lời giải:

Đặt \((x,y,z)=(a^2,b^2,c^2)\). Bài toán tương đương với:

\(\frac{bc(b+c)}{a}+\frac{ac(a+c)}{b}+\frac{ab(a+b)}{c}\geq 2(a^2+b^2+c^2)\)

Biến đổi ta thấy:

\(\text{VT}=a^2\left ( \frac{b}{c}+\frac{c}{b} \right )+b^2\left ( \frac{a}{c}+\frac{c}{a} \right )+c^2\left ( \frac{a}{b}+\frac{b}{a} \right )\)

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} \frac{a}{b}+\frac{b}{a}\geq 2\\ \frac{a}{c}+\frac{c}{a}\geq 2\\ \frac{b}{c}+\frac{c}{b}\geq 2\end{matrix}\right.\Rightarrow \text{VT}\geq 2(a^2+b^2+c^2)=\text{VP}\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow x=y=z>0\)

Lightning Farron
22 tháng 7 2017 lúc 9:10

Áp dụng BĐT AM-GM ta có:

\(\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge\dfrac{2\sqrt{yz}\cdot\sqrt{yz}}{x}=\dfrac{2yz}{x}\)

Tương tự cho 2 BĐT còn lại thì được:

\(\dfrac{2xy}{z}+\dfrac{2yz}{x}+\dfrac{2xz}{y}\ge2\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\ge x+y+z\)

Tiếp tục dùng AM-GM:

\(\dfrac{xy}{z}+\dfrac{yz}{x}\ge2\sqrt{y^2}=2y\)

Tương tự rồi cộng theo vế có:

\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\ge x+y+z\) (đúng)

Hay ta có ĐPCM. Khi \(x=y=z\)

Cold Wind
21 tháng 7 2017 lúc 22:44

Đề này à: \(\dfrac{\left(y+z\right)\sqrt{yz}}{x}+\dfrac{\left(z+x\right)\sqrt{zx}}{y}+\dfrac{\left(x+y\right)\sqrt{xy}}{z}\ge2\left(x+y+z\right)\)

Dùng máy tính kiểm tra. (đề sai không?)

Thế x=1, y=2, z=3

VT = 17,12576389

VP = 12