Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hắc Thiên
Xem chi tiết
Nguyễn Thị Kim Chi
Xem chi tiết
trương đăng bảo
Xem chi tiết
trương đăng bảo
7 tháng 2 2021 lúc 20:13

ko phải violympic toán đâu mà chỉ HSG thôi

Good look_Good like
Xem chi tiết
blua
Xem chi tiết
Đỗ Đức Duy
29 tháng 6 2023 lúc 15:36

Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.

2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m

Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11

Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.

Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.

Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …

Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.

  
Hoàng Thu Thủy
Xem chi tiết
Nguyễn Lương Hửu Huy
Xem chi tiết
Nguyen thuy dung
Xem chi tiết
Hậu Duệ Mặt Trời
5 tháng 2 2016 lúc 15:19

1) 2998

2) k=1

3) 720

**** mik nha !

Khánh Linh
Xem chi tiết