tìm GTNN của A = |3-2x|+|5-2x|+3
Tìm gtnn của A=√2x-5 -3/1+√2x-5
A = /2*-5-3/1+/2*-5
Nhãntìm GTNN của : A= 2x^2 + 3 / 2x^2 + 5
\(A=\frac{2x^2+3}{2x^2+5}=1-\frac{2}{2x^2+5}\)
vì A nhỏ nhất=>\(\frac{2}{2x^2+5}\)lớn nhất
=>2x2+5 bé nhất
=>\(2x^2+5\ge2.0^2+5=5\)
=>2x2+5 bé nhất =5
dấu "=" xảy ra khi x=0
\(\Rightarrow Min_A=\frac{2.0^2+3}{2.0^2+5}=\frac{3}{5}\)
vậy \(Min_A=\frac{3}{5}\)
a Cho x + y = 5 tìm GTNN của
A = |x+1| + |y-2|
b Cho x - y = 2 Tìm GTNN của
B = |2x+1| + |2y+1|
c Cho 2x+y = 3 Tìm GTNN của
C = |2x+3| + |y+2| +2
GIÚP MÌNH NHA MAI NỘP RỒI!!!!!!!!!!
a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)
\(\ge\left|x+1+y-2\right|\)
\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0
Vậy Min A = 4 <=> (x + 1)(y - 2) \(\ge\)0
a) Tìm GTNN của P = x^2 -2x+3
b) Tìm GTLN của M = -x^2 - 2x + 5
hông biết mới học lớp 6 làm seo biết đc toán lớp 8 tự nghĩ đi nha
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
a, P = x2- 2x + 3
P= ( x2 -2x +1) +2
= ( x-1)2 +2
ta có : ( x -1)2 \(\ge0\forall x\)=> (x-1)2 +2 \(\ge0+2\)=> P\(\ge\)2
dấu = xảy ra <=> ( x-1)2=0
=> x-1=0 => x=1
vậy GTNN của P=2 tại x=1
b, M= -( x2-2x+5)
M= - [( x2 -2x +1) +4]
= -( x-1)2-4
ta có: -( x-1)2 \(\le0\forall x\) => -( x-1)2 -4 \(\le0-4\) => M \(\le-4\)
dấu = xảy ra <=> -( x-1)2 =0
=> ( x-1 )20 => x-1 =0
=> x=1
vậy GTLN của M = -4 tại x =1
a) Tìm GTNN của biểu thức A = x2 - 2x +5
b) Tìm GTNN của biểu thức B = 2x2 - 6x
c) Tìm GTNN của biểu thức C = 4x - x2 = 3
a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4
Min là 4 khi x = 1
Tìm GTNN của |2x-3|+|2x-5|+4
Vì \(\left|2x-3\right|\ge0\) với mọi x
\(\left|2x-5\right|\ge0\) với mọi x
=> \(\left|2x-3\right|+\left|2x-5\right|+4\ge4\) với mọi x
Dấu "=" xảy ra :
.................. (đến chỗ này bạn tự làm nốt nha)
\(\left|2x-3\right|+\left|2x-5\right|+4=\left|2x-3\right|+\left|5-2x\right|+4\ge\left|2x-3+5-2x\right|+4\)
\(=6\)
\(\text{Dấu "=" xảy ra khi: }\left(2x-3\right)\left(5-2x\right)\ge0\)
\(\Rightarrow2x-3\ge0\text{ và }5-2x\ge0\text{ Hoặc }2x-3\le0\text{ và }5-2x\le0\)
\(\Rightarrow x\ge\frac{3}{2}\text{ và }x\ge\frac{5}{2}\Rightarrow x\ge\frac{5}{2}\text{ Hoặc }x\le\frac{3}{2}\text{ và }x\le\frac{5}{2}\Rightarrow x\le\frac{3}{2}\)
\(\text{Vậy không có giá trị nào của x thỏa mãn GTNN của A là 6}\)
Tìm GTLN(GTNN) của biểu thức:
A = 2(2x+3)^2+5
A = 2(2x + 3)2 + 5
vì (2x + 3)2 ≥ 0 ∀ x ⇒ 2(2x +3)2 + 5 ≥ 5
A(min) = 5 ⇒ x = - \(\dfrac{3}{2}\)
tìm GTNN của biểu thức A=(2x+5) tất cả mũ 4 +3
Lời giải:
$A=(2x+5)^4+3$
Ta thấy: $(2x+5)^4\geq 0$ với mọi $x$
$\Rightarrow A=(2x+5)^4+3\geq 0+3=3$
Vậy $A_{\min}=3$
Giá trị này đạt được khi $2x+5=0\Leftrightarrow x=\frac{-5}{2}$