Cho \(\Delta ABC\) có độ dài các cạnh là a, b, c, diện tích tam giác bằng S
Chứng minh rằng: \(2S\le ab\), \(2S\le ac\), \(2S\le bc\).
Cho tam giác ABC với $AB\le BC\le CA$AB≤BC≤CA. Trên các cạnh BC và AC lần lượt lấy hai điểm M và N (khác A,B,C). Chứng minh rằng MN < AC
Cho tam giác ABC có S là diện tích, AB=a. Trên tia AB lấy điểm M. Đường thẳng qua M// với BC cắt AC tại N. Xác định vị trí của M để tam giác AMN có diện tích bằng 2S
Xét tam giác ABC có độ dài các cạnh đối diện 3 góc A,B,C là a,b,c. CMR
\(r_a=\dfrac{2S}{b+c-a}=p.tan\dfrac{A}{2}\) với ra là bán kính đường tròn bàng tiếp góc A , p là nửa chu vi, S là diện tích của tam giác ABC
Cho tam giác ABC với \(AB\le BC\le CA\). Trên các cạnh BC và AC lần lượt lấy hai điểm M và N (khác A, B, C)
Chứng minh rằng MN < AC ?
Giải
Kẻ đoạn thẳng AM. Xét tam giác MAC. Chứng minh tương tự như bài 1.4 ta có MN < a, trong đó a là đoạn lớn nhất trong hai đoạn thẳng MA và MC. Nếu ta chứng minh được
MA < AC và MC < AC thì sẽ suy ra được a < AC, từ đó có MN < AC.
Trong tam giác ABC có AB ≤ AC, M ∈ BC (M ≠ B, M ≠ C); Chứng minh tương tự bài 1.4, ta có AM < AC. Mặt khác MC < BC ≤ CA. Vậy a < AC, suy ra MN < AC.
1.Cho tam giác ABC ngoại tiếp đường tròn (O).Biết D,E,F là các tiếp điểm , D thuộc AC, E thuộc AB, F thuộc BC Biết OE=r, AB=c, AC=b, BC=a
C/m:a) (a+b+c)*r=2S ( S là diện tích tam giác ABC)
b)nếu (a+b+c)(a+b-c)=4S thì tam giác ABC vuông
Cho tam giác ABC với \(AB\le BC\le CA\). Trên các cạnh BC và AC lần lượt lấy hai điểm M và N (khác A,B,C). Chứng minh rằng MN < AC
Áp dụng bất đẳng thức tam giác cho tam giác CMN ta có:
\(CN+CM>MN\)
Vì N nằm trên BC nên CN<BC
Vì M nằm trên AC nên CM<AC
=>\(BC+AC>CM+CN>MN\)
Đến đây tự giải tiếp thì dễ rồi
Cho tam giác abc gọi D, E, F lần lượt thuộc AB, BC, AC sao cho DA/DB=EB/EC=FC/FA=1/2.
a) Gọi diện tích tam giác ABC là S. CMR diện tích tam giác BDE bằng 2S/9
b) Tính diện tích DEF theo S.
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
\(ab+bc+ca\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì
2) cho tam giác ABC có độ dài các cạnh là a;b;c nội tiếp đường tròn tâm R .gọi x;y;z là khoảng cách từ điểm M thuộc miền trong của tam giác ABC đến các cạnh AB;AC;BC . Chứng minh \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{\frac{a^2+b^2+c^2}{2R}}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{ax}\frac{1}{\sqrt{a}}+\sqrt{by}\frac{1}{\sqrt{b}}+\sqrt{cz}\frac{1}{\sqrt{c}}\)
\(\le\sqrt{\left(ax+by+cz\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{2S_{ABC}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(=\sqrt{\frac{abc}{2R}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{\frac{ab+bc+ca}{2R}}\le\sqrt{\frac{a^2+b^2+c^2}{2R}}\)
ak uk ..mk nhầm ....phải là dấu ngược lại nha thắng