Ai nhà bán thẻ điện thoại cho mình một cái để nạp bang bang hứa sẽ có phần quà để đổi lại
Ai nhà bán thẻ điện thoại cho mình một cái để nạp bang bang hứa sẽ có phần quà để đổi lại
có ai có thẻ 20k ko? Cho mình để mình nạp tiền điện thoại với! Mình hết tiền rồi. Mình sẽ tick cho các bạn thật nhiều
ai cho em chung nick bang bang với, lúc nào có tiền em nạp thẻ cho (hứa mỗi tháng nạp 1 lần) ko lừa đảo, chém gió
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
day la muc giai toan chu ko phai cho choi bang bang
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
ai có nick bang bang cho mình mượn được ko mình hứa sẽ ko đổi mật khẩu và sẽ tick cho bạn 3 tick
kb nha
ai có nick bang bang trên 13 tank thì nhớ kết bạn với mình nha , mình sẽ tick cho,mình hứa sẽ ko đổi mk đâu mà lo
mình trên 13 tank rồi mình là bang chủ
Một chủ cửa hàng đã mua 100 cái điện thoại với giá 5 triệu đồng mỗi cái. Ông đã bán 75 cái với giá 6,2 triệu đồng một cái. Sau đó, ông giảm giá để bán hết số điện thoại còn lại. Vậy ông phải bán mỗi cái điện thoại còn lại với giá bao nhiêu để có lợi nhuận đạt tỉ lệ 20%?
Số vốn là :
100× 5 =500 ( triệu đồng )
75 cái bán được số tiền là :
6,2 × 75 = 465 ( triệu đồng )
Lợi nhuận 20số tiền ông phải nhận được sau khi bán 100 cái là :
500 + 500× 200 == 600 ( triệu )
Vì :
Số tiền cần nhận được khi bán 25 chiếc còn lại là :
600 − 465 == 135 ( triệu )
Suy ra :
Giá mỗi chiếc là :
135 : 25 == 5,4 ( triệu )
hello các bạn chào mừng đã đên với cuộc thi nhanh tay rinh quà với những câu hỏi mình đưa ra ai trả lời nhanh nhất sẽ được một thẻ cào điện thoại trị giá 500k(lưu ý chỉ co 5 người được chọn để chơi)
Mình đây,nhớ mời mình nhé,nhưng bạn k nên đăng như vậy.
Câu 1: Một chủ cửa hàng mua 100 điện thọi với giá 5 triệ đồng một cái. ông đã bán 75 cái với giá 6,2 triệu đồng một cái . sáu đó, ông giảm giá để bán hết số điện thoại còn lại. Vậy ông phải bán mỗi cái điện thoại còn lại với giá bao nhiêu để có lợi nhuận đại tỉ lệ 20%
Câu 2: Cho hình thang vuông ABCD (AB // CD, A = D = 90o) có AD=CD=2AB. gọi E là điểm đối xứng của A qua B
a) Chứng minh AE=2AB và tứ giác AECD là hình vuông.
b) Gọi M là trung điểm của EC và I là giao điểm của BC và DM. chứng minh diện tích tam giác DIC bằng diện tích tứ giác EBIM.
c) Biết DA và CB cắt nhau tại V Gọi n là hình chiếu của I trên AD. chứng minh NI2=ND.NV
Câu 1 :
Số vốn là:
100x5=500 triệu
Số tiền bán được 75 cái là:
6,2x75=465 triệu
Lợi nhuận 20%,tức số tiền ông nhận sau khi bán 100 cái là
500+500x20%=600 triệu
Số tiền nhận khi bán 25 chiếc còn lại:
600-465=135
Giá mỗi chiếc là
135:25=5,4Triệu
Câu 2 :
a) Chứng minh AE = 2AB và tứ giác AECD là hình vuông.
Vì E là điểm đối xứng với A qua B nên B là trung điểm của AE. Do đó, AE = 2AB.
Theo đề bài ta có: AD = CD = 2AB
=> AD = CD = AE.
Vì ABCD là hình thang vuông nên ta có: {AB//CDˆA=ˆD=90∘AB // CDA^=D^=90∘
Xét tứ giác AECD ta có:
AE // CD
AE = CD
=> Tứ giác AECD là hình bình hành (dấu hiệu nhận biết).
Mà ta lại có: AD = AE (chứng minh trên)
=> Tứ giác AECD là hình thoi (dấu hiệu nhận biết)
Theo giả thiết: ˆA=ˆD=90oA^=D^=90o
Suy ra, tứ giác AECD là hình vuông (dấu hiệu nhận biết)
b) Gọi M là trung điểm của EC và I là giao điểm của BC và DM. Chứng minh diện tích tam giác DIC bằng diện tích tứ giác EBIM.
Vì tứ giác AECD là hình vuông nên AE = CE = CD = DA (định nghĩa hình vuông)
Vì M là trung điểm của EC nên EM = CM =CE2=CE2.
Mà BE=AE2BE=AE2 và AE = CE (chứng minh trên).
=> BE = CM
Ta có: SBEC=12.BE.CESDCM=12.CM.DC}⇒SBEC=SDCMSBEC=12.BE.CESDCM=12.CM.DC⇒SBEC=SDCM
⇒SBEMI+SCMI=SDCI+SCMI⇒SBEMI+SCMI=SDCI+SCMI
⇒SBEMI=SDCI⇒SBEMI=SDCI (đpcm)
c) Biết DA và CB cắt nhau tại V. Gọi N là hình chiếu của I trên AD. Chứng minh NI2=ND.NVNI2=ND.NV.
Xét tam giác BEC và tam giác MCD ta có:
BE = MC (cmt)
ˆBEC=ˆMCD=90∘BEC^=MCD^=90∘
EC = CE (cmt)
⇒ΔBEC=ΔMCD⇒ΔBEC=ΔMCD (c-g-c)
⇒ˆBCE=ˆMDC⇒BCE^=MDC^ (hai góc tương ứng)
Ta có: ˆBCE+¯¯¯¯¯¯¯¯¯BCD=90∘⇒ˆMDC+ˆBCD=90∘BCE^+BCD¯=90∘⇒MDC^+BCD^=90∘
Xét tam giác DIC ta có: ˆIDC+ˆDCI=90∘⇒ˆDIC=90∘IDC^+DCI^=90∘⇒DIC^=90∘ (áp dụng định lý tổng ba góc trong một tam giác)
=> DI vuông góc với BC tại I.
Xét tam giác DNI vuông tại N, áp dụng định lý Py-ta-go ta có:
ID2=IN2+ND2⇒ND2=ID2−IN2ID2=IN2+ND2⇒ND2=ID2−IN2
Xét tam giác VNI vuông tại N, áp dụng định lý Py-ta-go ta có:
IV2=IN2+NV2⇒NV2=IV2−IN2IV2=IN2+NV2⇒NV2=IV2−IN2
Xét tam giác DVI vuông tại I, áp dụng định lý Py-ta-go ta có:
ID2+IV2=DV2ID2+IV2=DV2
⇒ID2+IV2=(VN+ND)2⇒ID2+IV2=VN+ND2
⇒ID2+IV2=VN2+2VN.ND+ND2⇒ID2+IV2=VN2+2VN.ND+ND2
⇒ID2+IV2=IV2−IN2+2VN.ND+ID2−IN2⇒ID2+IV2=IV2−IN2+2VN.ND+ID2−IN2
⇒2IN2=2VN.ND⇒2IN2=2VN.ND
⇒IN2=VN.ND⇒IN2=VN.ND.
Vậy NI2=ND.NVNI2=ND.NV.
Đổi thành công thẻ nạp điện thoại trên hoc24 thì mình dùng thế nào ạ?