tìm x,y
xy -1=3x+5y+4
[x-7]nhân[xy+1]
Tìm n;x;y
1: n chia hết cho 21 và n+1 chia hết cho 165
2: 5x-xy=26-3y
3: 3x+xy-4x=3
4: y2-5y+2x=xy-6
5: y2+3x-xy=6y-4
6: xy-y2=3y-x-5
7: (2x+5y+1).(2|x|+y+x2+x)=105
Tìm x, y thuộc Z, biết :
a) xy - 1 = 3x + 5y + 4
b) 3x + 4y - xy = 15
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
3/. Xy+x+y=2
4/.xy - 10 +5x-3y=2
5/.xy - 1=3x+5y+4
6/.3x+4y-xy=15
Tìm xy E Z
Mình chỉ phân tích hộ bạn, rồi bạn tự lập bảng và tìm ra giá trị x;y nhé :)
a) xy + x + y = 2
<=> xy + x + y + 1 = 2
<=> x ( y + 1 ) + ( y + 1 ) = 2
<=> ( x + 1 )( y + 1) = 2
b) xy - 10 + 5x - 3y = 2
<=> xy - 3y + 5x - 15 = -3
<=> y ( x - 3 ) + 5 ( x - 3 ) = -3
<=> ( x - 3 )( y + 5 ) = -3
c) xy - 1 = 3x + 5y + 4
<=> xy - 3x - 5y = 5
<=> xy - 3x - 5y + 15 = -10
<=> x ( y - 3 ) - 5 ( y - 3 ) = -10
<=> ( x - 5 ) ( y - 3 ) = -10
d) 3x + 4y - xy = 15
<=> 3x - xy - 12 + 4y = 3
<=> x ( 3 -y ) - 4 ( 3 - y ) = 3
<=> ( x - 4 ) ( 3 - y ) = 3
tìm x,y
a, xy-10+5x-3y=2
b,xy-1=3x+5y+4
tìm x,y thuộc Z,bt
a,(2x-1)(y-1)=10
b,x(y+4)-3(y+4)=19
cy(x-2)+3x-6=2
d,xy+3x-2y-7=0
e,xy-x+2(y-1)=13
f,xy-x+5y-7=0
g,x+y=x.y
(2x-1)*(y-1)=10
suy ra 2x-1=10/(y-1)
suy ra (y-1) thuộc ước của 10.ta có bảng sau:
y-1 |
1 |
-1 |
2 |
-2 |
5 |
-5 |
10 |
-10 |
y |
2 |
0 |
3 |
-1 |
6 |
-4 |
11 |
-9 |
x |
3 |
-4,5 |
13/6 |
-2 |
1/5 |
-0,5 |
1 |
0 |
Kết quả |
Nhận |
Loại |
Loại |
Nhận |
Loại |
Loại |
Nhận |
nhận |
vậy...........................
Tìm x,y thuộc Z biết:
1/ xy+14+2y+7x= -10
2/ xy+5x+y=4
3/ xy-1=3x+5y+4
6.............................................................................7
1/ xy+14+2y+7x=-10
y(x+2)+7(x+2)=-10
(x+2)(y+7)=-10
suy ra x+2, y+7 thuộc ước -10
rồi vẽ bảng xét từng giá trị là đc, còn ấy câu kia thì phân tích thành nhân tử rồi lm như bình thường
2/xy+5x+y=4
x(y+5)+y=4
x(y+5)+(y+5)=9
(y+5)(x+1)=9
9=1.9
= 9.1
=(-1).(-9)
= (-9).(-1)
Tu lam not nhe