CMR 2^1+(-2^2)+2^3+(-2^4)+.........+2^99+(-2^100) CMR A chia hết cho 6
CMR
A=1+5+5^2+5^3+......+5^98+5^99 chia hết cho 6
B=1+5+5^2+5^3+......+5^99+5^100 ko chia hết cho 6
\(A=1+5+5^2+5^3+...+5^{99}\)
\(A=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)\)
\(A=6+5^2\cdot6+...+5^{98}\cdot6\)
\(A=6\left(1+5^2+...+5^{98}\right)⋮6\)
\(B=1+5+5^2+5^3+...+5^{100}\)
\(B=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)
\(B=6+6\cdot5^2+...+6\cdot5^{98}+5^{100}\)
\(B=6\left(1+5^2+...+5^{98}\right)+5^{100}\)
a ⋮ c; b không chia hết cho c => a + b không chia hết cho c
Cho a/b=1/1×2+1/3×4+1/5×6+1/7×8+…..+1/99×100 . CMR: a chia hết cho 151
\(\frac{a}{b}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\frac{a}{b}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{a}{b}=1-\frac{1}{100}=\frac{99}{100}\)
Do đó a = 99k và b = 100k (k \(\in\) N*)
Còn chứng minh a chia hết cho 151 thì bạn xem lại đề, còn tùy vào k thì a mới chia hết cho 151.
:Cho a/b=1/1×2+1/3×4+1/5×6+1/7×8+…..+1/99×100 . CMR: a chia hết cho 151
1. CMR:
a) D = \(6+6^2+6^3+......+6^{99}+6^{100}\) chia hết cho 7
b) E = \(3^{n+3}+2^{n+3^{ }}+3^{n+1}+2^{n+2}\) chia hết cho 6
Ta có : Số số hạng của dãy số D chính là khoảng cách từ 1-->100 , mỗi số cách nhau 1 đơn vị .
=> Số số hạng của dãy số D là : \(\frac{100-1}{1}+1=100\) ( số hạng )
Vậy ta có số nhóm là : 100 : 2 = 50 ( nhóm )
\(D=\left(6+6^2\right)+\left(6^3+6^4\right)+...+\left(6^{99}+6^{100}\right)\)
\(D=\left(6+6^2\right)+6^2\left(6+6^2\right)+...+6^{98}\left(6+6^2\right)\)
\(D=1.42+6^2.42+...+6^{98}.42\)
\(D=\left(1+6^2+...+6^{98}\right).42\)
Vì : 42 = 6 . 7 . Mà : \(1+6^2+...+6^{98}\in N\) \(\Rightarrow D⋮7\)
Vậy : \(D⋮7\)
b, \(E=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(E=3^n.3^3+2^n.2^3+3^n.3+2^n.2^2\)
\(E=3^n.3^3+3^n.3+2^n.2^3+2^n.2^2\)
\(E=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(E=3^n.30+2^n.12\)
\(E=3^n.5.6+2^n.2.6\)
\(E=\left(3^n.5+2^n.2\right).6\)
Mà : \(3^n.5+2^n.2\in N\Rightarrow E⋮6\)
Vậy : \(E⋮6\)
a)D=6+62+63+...+699+6100
D=(6+62)+(63+64)+...+(699+6100)
D=42.1+62..42+...+698.42
D=42.(1+62+...+698)\(⋮\)7
\(\Rightarrow\)D\(⋮\)7
\(6D=6^2+6^3+...+6^{101}\)
\(\Rightarrow5D=6D-D=6^{101}-6=6\left(6^{100}-1\right)\)
Ta chứng minh được \(6^{100}-1\) chia hết cho 7
Cụ thể là 6 đồng dư với \(-1\left(mod7\right)\Rightarrow6^{100}\) đồng dư với \(\left(-1\right)^{100}=1\left(mod7\right)\)
\(\Rightarrow6^{100}-1\) chia hết cho 7
Vậy \(5D\) chia hết cho 7 mà \(UCLN\left(5;7\right)=1\) suy ra D chia hết 7
CMR : 1+2-3+4-4+...+98-99+100 chia hết cho 4
a) tính A=4+22+23+24+...+220
b)tìm x biết (x+1 )+(x+2)+...+(x+100)=5750
c) CMR nếu : (ab+cd+eg) chia hết cho 11 thì abcdeg cũng chia hết cho 11
d) CMR : 1028+8 chia hết cho 72
e) tính M=1-2+3-4+5-6+...+199-200 N=5-6+7-8+9-...+199
P=1-3+5-7+...+97-99 Q=2-4+6-8+...+48-50
MÌNH CHỈ LÀM ĐƯỢC a,b,c,d thôi và e ý 1
Cho A = 2 + 22 + 23 + ... + 299 + 2100. CMR
A chia hết cho 31 ; A chia hết cho 5
Cho B = 3 + 32 + 33 + 34 + ... + 390. CMR
B chia hết cho 11 ; B chia hết cho 13
Làm nhanh mình cần gấp nha
Cho a/b = 1-1/2+1/3-1/4+...+1/99-1/100
CMR a chia hết cho 151
1.Cho A=1+2-3-4+5+6-...-99-100
a)A có chia hết cho 2,3,5 không? Vì sao?
b)A có bao nhiêu ước nguyên?
2.Cho a,b là các số nguyên. CMR 2a+3b chia hết 7 thì 8a+5b chia hết 7