Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi thu huyen
Xem chi tiết
Thắng Nguyễn
30 tháng 5 2016 lúc 17:17

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

Thắng Nguyễn
30 tháng 5 2016 lúc 17:28

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)

hieungockko
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Trần Điền
Xem chi tiết
Nguyễn Anh Quân
8 tháng 3 2018 lúc 12:30

Hình như đề sai rùi bạn ơi !

Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác

Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu

Mk nói có gì sai thì thông cảm nha !

Trần Điền
8 tháng 3 2018 lúc 12:34

đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà

Nguyễn Ngọc Tuấn Anh
1 tháng 11 2019 lúc 20:33

Theo B.C.S ta có \(\sqrt{2\left(x^2+y^2\right)}\)\(\ge\)(\(\sqrt{\left(x+y\right)^2}\)\(=x+y\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\ge\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)=2+\frac{x^2+y^2}{xy}\)

\(\Leftrightarrow\)\(P\ge2+\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3\left(x^2+y^2\right)}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+2\sqrt{\frac{xy}{x^2+y^2}\times\frac{x^2+y^2}{4xy}}\)\(+\frac{3\times2xy}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+1+\frac{3}{2}=\frac{9}{2}\)

Dấu bằng xảy ra \(\Leftrightarrow\)x=y

Khách vãng lai đã xóa
Đỗ Linh Hương
Xem chi tiết
Đỗ Linh Hương
19 tháng 7 2017 lúc 8:12

help me !!!hahahahahahahahahaha

 Mashiro Shiina
19 tháng 7 2017 lúc 9:51

\(\)bài nào có MIN or MAX thì mk làm,mk ko làm thì có nghĩa là ko có nha

\(D=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

\(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|4x-3\right|=0\Rightarrow4x=3\Rightarrow x=\dfrac{3}{4}\\\left|5y+7,5\right|=0\Rightarrow5y=-7,5\Rightarrow y=-1,5\end{matrix}\right.\)

\(\Rightarrow MIN_D=17,5\) khi \(x=\dfrac{3}{4};y=-1,5\)

\(E=4-\left|5x-2\right|-\left|3y+12\right|\)

\(\left\{{}\begin{matrix}\left|5x-2\right|\ge0\\\left|3y+12\right|\ge0\end{matrix}\right.\)

\(\Rightarrow E=4-\left|5x-2\right|-\left|3y+12\right|\le4\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|5x-2\right|=0\Rightarrow5x=2\Rightarrow x=\dfrac{2}{5}\\\left|3y+12\right|=0\Rightarrow3y=-12\Rightarrow y=-4\end{matrix}\right.\)

\(\Rightarrow MAX_E=4\) khi \(x=\dfrac{2}{5};y=-4\)

nguyen quynh lam
Xem chi tiết
Nguyen Thi Ngoc Anh
Xem chi tiết
Nguyen Thi Ngoc Anh
25 tháng 10 2016 lúc 10:56

ko biert lam kho qua

Cristiano Ronaldo
Xem chi tiết
Phạm Tuấn Đạt
5 tháng 8 2018 lúc 9:04

\(A=\left(1-x^{2n}\right)+\left(2-y^{2n}\right)\)

Có \(x^{2n}\ge0\);\(y^{2n}\ge0\)

\(\Rightarrow A\le\left(1-0\right)+\left(2-0\right)=3\)

Dấu "=" xảy ra khi x = 0 ; y = 0 với mọi n

Vậy Max A = 3 <=> x = 0 ; y = 0

Vu Ngoc Anh
Xem chi tiết