TÌM X
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
Tìm x
a)\(3x\left(2x+1\right)=5\left(2x+1\right)\)
b)\(\left(3x-8\right)^2=\left(2x-7\right)^2\)
c)\(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2=0\)
d)\(\left(9x^2-16\right)^2-4\left(3x+4\right)^2\)
e)\(\left(2x-1\right)\left(4x^2+2x+1\right)=x\left(x-8\right)\)
a) \(3x\left(2x+1\right)=5\left(2x+1\right)\)
\(3x=5\)
\(x=\frac{5}{3}\)
b) \(\left(3x-8\right)^2=\left(2x-7\right)^2\)
\(3x-8=2x-7\)
\(x=1\)
c) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2=0\)
\(\left(4x^2-3x-18\right)^2=\left(4x^2+3x\right)^2\)
\(4x^2-3x-18=4x^2+3x\)
\(6x=-18\)
\(x=-3\)
d) Sai đề
e) ko bt
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
Mình sẽ làm cách cơ bản cho bạn nhé :)
Ta có : \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
Đặt \(y=x^2+4x+8\), phương trình trở về dạng \(y^2+3xy+2x^2=0\Leftrightarrow\left(y^2+2xy+y^2\right)+\left(x^2+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+x\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(2x+y\right)=0\Leftrightarrow\orbr{\begin{cases}x+y=0\\2x+y=0\end{cases}}\)
Trường hợp 1 : Nếu x + y = 0 ta có phương trình : \(x^2+5x+8=0\) . Phương trình này vô nghiệm.Trường hợp 2 : Nếu 2x + y = 0 ta có phương trình : \(x^2+6x+8=0\Leftrightarrow\left(x+2\right)\left(x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)Vậy kết luận : Tập nghiệm của phương trình : \(S=\left\{-4;-2\right\}\)
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Rightarrow\left(x^2+4x+8\right)\left(3x+x^2+4x+8\right)+2x^2=0\)
\(\Rightarrow\left(x^2+4x+8\right)\left(x^2+7x+8\right)+2x^2=0\)
Ta có đồng thời :
\(2x^2=0\Rightarrow x=0\)
Và : \(\left(x^2+4x+8\right)\left(x^2+7x+8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+4x+8=0\left(vn\right)\\x^2+7x+8=0\end{cases}}\Rightarrow x^2+x-8x+8=0\)
\(\Rightarrow x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Rightarrow\left(x-8\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=8\\x=1\end{cases}}\)
\(1.\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(2.\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(3.4\left(x^2+x+1\right)^2+5x\left(x^2+x+1\right)+x^2=0\)
Giair phương trình hộ mik nhé đúng mik tick cho
1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4
P/s: Bạn Thùy Linh nếu PT chứa nghiệm vô tỉ thì với trình độ bình thường không dễ tìm được nghiệm đâu nhé
3) Ta có: \(4\left(x^2+x+1\right)^2+5x\left(x^2+x+1\right)+x^2=0\)
\(\Leftrightarrow\left[4\left(x^2+x+1\right)^2+4x\left(x^2+x+1\right)\right]+\left[x\left(x^2+x+1\right)+x^2\right]=0\)
\(\Leftrightarrow4\left(x^2+x+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(4x^2+4x+4+x\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(4x^2+5x+4\right)\left(x+1\right)^2=0\)
Xét PT \(4x^2+5x+4=0\) ta có:
\(\Delta_x=5^2-4\cdot4\cdot4=-39< 0\)
\(\Rightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy x = -1
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
Đặt \(x^2+4x+8=t\)
Khi đó PT có dạng:
\(t^2+3xt+2x^2=t^2-tx-2xt^2+2x^2=t\left(t-x\right)-2x\left(t-x\right)=\left(t-x\right)\left(t-2x\right)\)
\(=\left(x^2+4x+8-x\right)\left(x^2+4x+8-2x\right)=\left(x^2+3x+8\right)\left(x^2+2x+8\right)\)
Giải các phương trình sau :
a) \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
b) \(3x\left(25x+15\right)-35\left(5x+3\right)=0\)
c) \(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
d) \(\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\)
e) \(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)
f) \(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
a) (x-1)(5x+3)=(3x-8)(x-1)
= (x-1)(5x+3)-(3x-8)(x-1)=0
=(x-1)[(5x+3)-(3x-8)]=0
=(x-1)(5x+3-3x+8)=0
=(x-1)(2x+11)=0
\(\Leftrightarrow\) x-1=0 hoặc 2x+11=0
\(\Leftrightarrow\) x=1 hoặc x=\(\dfrac{-11}{2}\)
Vậy S={1;\(\dfrac{-11}{2}\)}
b) 3x(25x+15)-35(5x+3)=0
=3x.5(5x+3)-35(5x+3)=0
=15x(5x+3)-35(5x+3)=0
=(5x+3)(15x-35)=0
\(\Leftrightarrow\) 5x+3=0 hoặc 15x-35=0
\(\Leftrightarrow\) x=\(\dfrac{-3}{5}\) hoặc x=\(\dfrac{7}{3}\)
Vậy S={\(\dfrac{-3}{5};\dfrac{7}{3}\)}
c) (2-3x)(x+11)=(3x-2)(2-5x)
=(2-3x)(x+11)-(3x-2)(2-5x)=0
=(3x-2)[(x+11)-(2-5x)]=0
=(3x-2)(x+11-2+5x)=0
=(3x-2)(6x+9)=0
\(\Leftrightarrow\) 3x-2=0 hoặc 6x+9=0
\(\Leftrightarrow\) x=\(\dfrac{2}{3}\) hoặc x=\(\dfrac{-3}{2}\)
Vậy S={\(\dfrac{2}{3};\dfrac{-3}{2}\)}
d) (2x2+1)(4x-3)=(2x2+1)(x-12)
=(2x2+1)(4x-3)-(2x2+1)(x-12)=0
=(2x2+1)[(4x-3)-(x-12)=0
=(2x2+1)(4x-3-x+12)=0
=(2x2+1)(3x+9)=0
\(\Leftrightarrow\)2x2+1=0 hoặc 3x+9=0
\(\Leftrightarrow\)x=\(\dfrac{1}{2}\)hoặc x=\(\dfrac{-1}{2}\) hoặc x=-3
Vậy S={\(\dfrac{1}{2};\dfrac{-1}{2};-3\)}
e) (2x-1)2+(2-x)(2x-1)=0
=(2x-1)[(2x-1)+(2-x)=0
=(2x-1)(2x-1+2-x)=0
=(2x-1)(x+1)=0
\(\Leftrightarrow\) 2x-1=0 hoặc x+1=0
\(\Leftrightarrow\) x=\(\dfrac{-1}{2}\) hoặc x=-1
Vậy S={\(\dfrac{-1}{2}\);-1}
f)(x+2)(3-4x)=x2+4x+4
=(x+2)(3-4x)=(x+2)2
=(x+2)(3-4x)-(x+2)2=0
=(x+2)[(3-4x)-(x+2)]=0
=(x+2)(3-4x-x-2)=0
=(x+2)(-5x+1)=0
\(\Leftrightarrow\) x+2=0 hoặc -5x+1=0
\(\Leftrightarrow\) x=-2 hoặc x=\(\dfrac{1}{5}\)
Vậy S={-2;\(\dfrac{1}{5}\)}
Tìm x biết:
a) \(3x^2-4x=0\). b) \(\left(x+3\right)\left(x-1\right)+2x\left(x+3\right)=0\).
c) \(9x^2+6x+1=0\). d) \(x^2-4x=4\).
a)\(3x^2-4x=0<=>x(3x-4)=0\)
TH1: x=0
TH2 3x-4=0 <=>x=4/3
KL:.....
b) (x+3)(x−1)+2x(x+3)=0.
<=> (x+3)(x-1+2x)=0
TH1: x+3=0 <=> x=-3
TH2 x-1=0 <=> x=1
KL:.....
c) \(9x^2+6x+1=0. <=>(3x+1)^2=0<=>3x+1=0<=>x=-1/3 \)
KL:......
d) \(x^2−4x=4.<=>(x-2)^2=0<=>x-2=0<=>x=2\)
KL:....
a) \(3x^2-4x=0\)
\(\Leftrightarrow x\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
b) \(\left(x+3\right)\left(x-1\right)+2x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
c) \(9x^2+6x+1=0\)
\(\Leftrightarrow\left(3x+1\right)^2=0\)
\(\Leftrightarrow3x+1=0\Leftrightarrow x=-\dfrac{1}{3}\)
d) \(x^2-4x=4\)
\(\Leftrightarrow\left(x-2\right)^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\sqrt{2}\\x-2=-2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}+2\\x=-2\sqrt{2}+2\end{matrix}\right.\)
Giải các phương trình sau:
a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
b)\(\left(6x+7\right)^2\left(3x+4\right)\left(x+1\right)=6\)
c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
d) \(2x^4-5x^3+6x^2-5x+2=0\)
e) \(2x^4+x^3-6x^2+x+2=0\)
f) \(x^4+2x^3+4x^2+2x+1=0\)
đố ai giải được hết!!
chẳng ai giải, thôi mình giải vậy!
a) Đặt \(y=x^2+4x+8\),phương trình có dạng:
\(t^2+3x\cdot t+2x^2=0\)
\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)
\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}
b) nhân 2 vế của phương trình với 12 ta được:
\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)
Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)
giải tiếp ra ta sẽ được S={-2/3;-5/3}
c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
S={3;5}
d)s={1}
e) S={1;-2;-1/2}
f) phương trình vô nghiệm
giải các pt sau:
a, \(\left(x^2+4x+8\right)^2+3x.\left(x^2+4x+8\right)+2x^2=0\) 0
b, \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)
b) \(\dfrac{x-5}{2017}-1+\dfrac{x-2}{2020}-1=\dfrac{x-6}{2016}-1+\dfrac{x-68}{1954}-1\)
\(\dfrac{x-2022}{2017}+\dfrac{x-2002}{2020}=\dfrac{x-2022}{2016}+\dfrac{x-2022}{1954}\)
\(\Leftrightarrow\left(x-2022\right)\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\right)=0\)
\(\Leftrightarrow x-2022=0\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\ne0\right)\)
\(\Leftrightarrow x=2022\)
Tìm x, biết
a,\(\left(x^2+2x\right)^2-2x^2-4x=\)3
b,\(\left(x+\frac{1}{2}\right)^2-\left(x+\frac{1}{2}\right)\left(x+6\right)=8\)
c,\(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
d,\(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x^2-4\right)=1\)
e,\(3x^2+7x=10\)
g,\(\left(3x+5\right)\left(2x-1\right)-6x\left(x+2\right)=x\)
h,\(2\left(x+3\right)-x^2-3x=0\)
i,\(x^3-5x^2-14x=0\)