Chứng minh rằng M=2016*2017*2018*2019+1 là hợp số
Gúp mình đi tí nữa mình phải nộp rồi~
2019=2019+2018+2017+....x
Trong đó vế phải là toogr các số nguyên liên tiếp theo thứ tự giảm dần
Giúp mình luôn nhé tí nữa phải nộp bài
tính tổng các phân số sau:
a) 1/1*2+1/2*3+1/3*4+...+1/2017*2018
b)1/1*3+1/3*5+1/5*7+...+1/2017*2019
c)5/1*2+5/2*3+5/3*4+...+5/2018+2019
help me nhanh lên mình đang cần gấp tí nữa là mình đi hojc rồi
a) Các số có dạng : \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a}-\)\(\frac{1}{a+1}\)
Thế vào bởi các số sẽ có kết quả
b) Các số có dạng : \(\frac{1}{a\left(a+2\right)}=\frac{1}{2}.\frac{2}{a\left(a+2\right)}=\frac{1}{2}.\frac{\left(a+2\right)-a}{a\left(a+2\right)}\)\(=\frac{1}{2}.\left(\frac{1}{a}-\frac{1}{a+2}\right)\)
Làm tương tự trên
c) Lấy nhân tử chung là 5 rồi làm như câu a)
bạn có thể làm ra hộ mình được ko mình ko hiểu
chứng minh 2015/2016 + 2016/2017 + 2017/2018 + 2018/2019 + 2019/2020 + 2020/2015 > 6
Vì:
khi tính bài toán 2015/2016 + 2016/2017 + 2017/2018 + 2018/2019 + 2019/2020 + 2020/2015 này ra thì ta được con số là 6,000003688 con số này phải lớn hơn số 6 nên: 6,000003688 > 6
Vì:khi tính bài toán 2015/2016+2016/2017+2017/2018+2018/2019+ 2019/2020+2020/2015 ta ra được là: 6,000003688 nên: 6,000003688 > 6
2015/2016 + 2016/2017 + 2017/2018 + 2018/2019 + 2019/2020 + 2020/2015 = 6,000003688 vậy: 6,000003688 > 6
so sánh 10^2019-1/10^2018-1 và 10^2018+1/10^2017+1
Nhanh lên mình gấp lắm. Ngày mai nộp rồi.
Ta có : \(\frac{10^{2019}-1}{10^{2018}-1}< \frac{10^{2019}-1+11}{10^{2018}-1+11}=\frac{10^{2019}+10}{10^{2018}+10}=\frac{10\left(10^{2018}+1\right)}{10\left(10^{2017}+1\right)}=\frac{10^{2018}+1}{10^{2017}+1}\)
Vậy \(\frac{10^{2019}-1}{10^{2018}-1}< \frac{10^{2018}+1}{10^{2017}+1}\)
trả lời luôn câu hỏi thứ 2 của minhf nhé
Tìm giá trị nhỏ nhất của biểu thức: \(Q=|x-2017|+|x-2018|+|x-2019|\)
giúp mình vs các bn ơi chiều mình phải nộp rồi
Ta có :
\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)
\(\Rightarrow\)\(2017\le x\le2019\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại )
Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)
Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)
\(\Leftrightarrow\)\(x-2018=0\)
\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) )
Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)
Chúc bạn học tốt ~
\(2015^{2016}+2016^{2017}+2017^{2018}+2018^{2019}\) chứng tỏ rằng tổng không là số chính phương
giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương
mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4
ta có 2015^2016 ≡ (-1)^2016 (mod 4); 2016^2017 chia hết cho 4; 2017^2018 ≡ 1^2018 (mod 4); 2018^2019 ≡ 2^2019
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)
<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)
ta có 2^2019=4x2^2017 chia hết cho 4
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí
=> điều giả sử sai
=>ĐPCM
Cho f(x) là đa thức bậc 3 với hệ số cao nhất là số nguyên dương. Biết rằng f(2017)=2018 và f(2018)=2019. Chứng minh f(2019)-f(2016) là hợp số
Lời giải:
Sử dụng công thức nội suy Newton:
$f(x)=a_1+a_2(x-2017)+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$ với $a_4$ nguyên dương, $a_1,a_2, a_3, t$ bất kỳ.
Ta có:
$f(2017)=a_1=2018$
$f(2018)=a_1+a_2=2019$
$\Rightarrow a_2=1$. Thay giá trị $a_1,a_2$ vào lại $f(x)$ thì:
$f(x)=x+1+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$
Do đó:
$f(2019)=2020+2a_3+2a_4(2019-a)$
$f(2016)=2017+2a_3+2a_4(2016-a)$
$\Rightarrow f(2019)-f(2016)=3+6a_4\vdots 3$ với mọi $a_4$ nguyên dương.
Cũng dễ thấy $3+6a_4>3$ với mọi $a_4$ nguyên dương
Do đó $f(2019)-f(2016)$ là hợp số (đpcm)
MỌI NGƯỜI AI HỌC GIÚP MÌNH BÀI NÀY VỚI Ạ....
tính nhanh:
A= 2006 X 2008 - 20072
B= 2016 X 2018 - 20172
MÌNH CẢM ƠN MỌI NGƯỜI Ạ... CHO MÌNH CÂU TRẢ LỜI NHÉ... MAI MÌNH PHẢI NỘP RỒI. CHO MÌNH XIN CẢ CÁCH làm nữa nhé......
A= 2006 X 2008 - 20072
A = 2006 . 2008 - 2007 . 2007
A = 2006 . ( 2007 + 1 ) - 2007 . ( 2006 + 1 )
A = 2006 . 2007 + 2006 - 2007 . 2006 + 2007
A = -1
B= 2016 X 2018 - 20172
B= 2016 . 2018 - 2017 . 2017
B = 2016 . ( 2017 + 1 ) - 2017 . ( 2016 + 1 )
B = 2016 . 2017 + 2016 - 2017 . 2016 + 2017
B = -1
\(A=2006.2008-2007^2\)
\(=\left(2007-1\right)\left(2007+1\right)-2007^2\)
\(=2007^2-1-2007^2\)
\(=1\)
1-3+5-7+...+2013-2015+2017-2019
20 phút nữa mình nộp bài rồi.
Ta có :
1 - 3 + 5 - 7 + ...+ 2013 - 2015 + 2017 - 2019
= ( 1 + 5 + ...+ 2017 ) - ( 3 + 7 + ...+ 2019 )
= A - B
Tính A
Số lượng số của A là :
( 2017 - 1 ) : 4 + 1 = 505 ( số )
Tổng A là :
( 2017 + 1 ) x 505 : 2 = 509545 ( 1 )
Tính B
Số lượng số của B là :
( 2019 - 3 ) : 4 + 1 = 505 ( số )
Tổng B là :
( 2019 + 3 ) x 505 : 2 = 510555 ( 2 )
Từ ( 1 ) ; ( 2 )
=> A - B = 509545 - 510555
=> A - B = -1010
Vậy tổng dãy số ban đầu là -1010
Đây là cách cấp 1
Chúc bạn học tốt !!!