so sánh A =2004^2003+1/2004^2004+1/ và B=2004^2004+1/2004^2005+1
So sánh:2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
Câu hỏi của linh phạm - Toán lớp 6 - Học toán với OnlineMath
So Sánh 2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
So sánh:
2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
So sánh A và B biết:
A = 2003 x 2004 - 1/2003 x 2004
B = 2004 x 2005 - 1/2004 x 2005
So sánh:
a) A= 100^2009+1/ 100^2008+1
B= 100^2010+1/100^2009+1
b) A= 2003*2004-1/2003*2004
B= 2004*2005-1/2004*2005
a, A<B
b, A>B
hok tốt
bạn trình bày hẳn ra
So sánh :
a, 2012 * 2013 / 2012 * 2013 + 1 và 2013 / 2012
b , A = 2003 * 2004 - 1 / 2003 * 2004 và B = 2004 * 2005 - 1 / 2004 * 2005
a, Ta có: \(\frac{2012.2013}{2012.2013+1}< 1< \frac{2013}{2012}\)
\(\Rightarrow\frac{2012.2013}{2012.2013+1}< \frac{2013}{2012}\)
b, \(A=\frac{2003.2004-1}{2003.2004}=1-\frac{1}{2003.2004}\)
\(B=\frac{2004.2005-1}{2004.2005}=1-\frac{1}{2004.2005}\)
Ta có: \(2003.2004< 2004.2005\)
\(\Rightarrow\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
\(\Rightarrow1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)
\(\Rightarrow A< B\)
So sánh A và B biết:
A=2003*2004-1/2003*2004 và B=2004*2005-1/2004*2005
[ Lưu ý dấu này / là dấu phân số nhé]
GIẢI NHANH GIÚP MÌNH NHA!
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
Vì 1 = 1 và \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\) nên A > B
Vậy A > B
Chắc sai =))
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=\frac{2003\cdot2004}{2003\cdot2004}-\frac{1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=\frac{2004\cdot2005}{2004\cdot2005}-\frac{1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
có : \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\)
\(\Rightarrow1-\frac{1}{2003\cdot2004}< 1-\frac{1}{2004\cdot2005}\)
\(\Rightarrow A< B\)
so sánh A=\(\frac{2004^{2003}+1}{2004^{2004}+1}\) và B=\(\frac{2004^{2004}+1}{2004^{2005}+1}\)
so sánh A=\(\frac{2004^{2003}+1}{2004^{2004}+1}\) và B=\(\frac{2004^{2004}+1}{2004^{2005}+1}\)
\(2004A=\frac{2004^{2004}+2004}{2004^{2004}+1}=1+\frac{2003}{2004^{2004}+1}\)
\(2004B=\frac{2004^{2005}+2004}{2004^{2005}+1}=1+\frac{2003}{2004^{2005}+1}\)
\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
\(\Rightarrow2004A>2004B\)
\(\Rightarrow A>B\)
2004A=\(\frac{2004^{2004}+2004}{2004^{2004}+1}\)
\(\frac{2004^{2004}+2004}{2004^{2004}+1}-1=\frac{2003}{2004^{2004}+1}\)
2004B=\(\frac{2004^{2005}+2004}{2004^{2005}+1}\)
\(\frac{2004^{2005}+2004}{2004^{2005}+1}-1=\frac{2003}{2004^{2005}+1}\)
Ta thấy :\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
=> \(2004A>2004B\)
Vậy \(A>B\)