Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
xuantruong
Xem chi tiết
duong duy duc
15 tháng 4 2015 lúc 22:04

a+2=1+2=3:3,b+3=-1+3=2:2,ngu thế

.
Xem chi tiết
FL.Hermit
6 tháng 9 2020 lúc 10:08

Do:    \(\left(a+1\right)⋮b\Rightarrow a+1=kb\)

=>   \(a=kb-1\)

=>   \(\left(b+2\right)⋮kb-1\)

Do:   \(b+2;kb-1>0\Rightarrow b+2\ge kb-1\Rightarrow b+3\ge kb\)      (1)

NẾU:   \(k\ge5\Rightarrow kb\ge5b=b+4b\ge b+4>b+3\)               (2)

TỪ (1) VÀ (2) => LOẠI. 

=>     Nếu    \(k=4\Rightarrow b+3\ge4b\Rightarrow1\ge b\Rightarrow b=1\)     (DO    \(b\ge1\left(b\inℕ^∗\right)\))

=>   \(3⋮a\Rightarrow a=\left\{1;3\right\}\)

=>   \(\hept{\begin{cases}a=1;b=1\\a=3;b=1\end{cases}}\)

NẾU    k = 3 \(\Rightarrow b+3\ge3b\Rightarrow3\ge2b\Rightarrow b=1\)và kết quả giống tương tự TH1 k = 4

BẠN XÉT NỐT 2 TRƯỜNG HỢP k=1; k=2 nhaaaaaa

Khách vãng lai đã xóa
Luke Skywalker
Xem chi tiết
Phạm Tuấn Bách
Xem chi tiết
Hải Đậu Thị
17 tháng 12 2015 lúc 23:20

a; Đặt A= \(a^{2017}+a^{2015}+1\)

\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)

\(\Rightarrow A\) chia hết cho \(a^2+a+1\)

do \(a^2+a+1\) > 1 (dễ cm đc)

mà A là số nguyên tố

\(\Rightarrow A=a^2+a+1\)

hay \(a^{2017}+a^{2015}+1=a^2+a+1\)

\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)

\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)

do a dương => a>0 => a-1=0=> a=1(t/m)

Kết Luận:...

chỗ nào bạn chưa hiểu cứ nói cho mình nha :3

 

 

Bùi Minh Quân
Xem chi tiết
Chu Văn Tĩnh
Xem chi tiết
Nguyễn Anh Quân
1 tháng 3 2018 lúc 21:50

b, a+1 và b+2007 chia hết cho 6

=> a+1 và b+2007 đều chẵn

=> a và b đều lẻ 

=> a+b chẵn

Mà a là số nguyên dương nên 4^a chẵn

=> 4^a+a+b chẵn

=> 4^a+a+b chia hết cho 2 (1)

Lại có : a+1 và b+2007 chia hết cho 3

=> a chia 3 dư 2 và b chia hết cho 3

=> a+b chia 3 dư 2

Mặt khác : 4^a = (3+1)^a = B(3)+1 chia 3 dư 1

=> 4^a+a+b chia hết cho 3 (2)

Từ (1) và (2) => 4^a+a+b chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

Tk mk nha

Than toan hoc
30 tháng 6 2020 lúc 21:26

Vì chưa thấy ai giải câu a nên thầy sẽ giải hộ nhé

Ta có \(32\equiv1\left(mod31\right)\Rightarrow32^{402}\equiv1^{402}=1\left(mod31\right)\)(Theo thuyết đồng dư)

nên \(32^{402}=2^{2010} \)chia 31 dư 1 suy ra \(2^{2011}\)chia 31 dư 2

Phần còn lại em tự làm nhé

Khách vãng lai đã xóa
Mạnh Khôi
Xem chi tiết
kiss Hoàng Tử Kai ss
Xem chi tiết
Tuấn Anh Phan Nguyễn
13 tháng 2 2016 lúc 19:05

3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}

Mà a > 0

=> a thuộc {1;3}

Ta có bảng kết quả:

a13
b-231
b53

 

Thân Thị Hoa
Xem chi tiết