Tìm 2 số nguyên dương a,b biết a+1 chia hết cho b mà b+1 chia hết cho a
Tìm hai số nguyên dương a và b biết a+2 chia hết cho b và b+3 chia hết cho a?
Tìm a, b là các số nguyên dương để a+1 chia hết cho b và b+2 chia hết cho a.
Do: \(\left(a+1\right)⋮b\Rightarrow a+1=kb\)
=> \(a=kb-1\)
=> \(\left(b+2\right)⋮kb-1\)
Do: \(b+2;kb-1>0\Rightarrow b+2\ge kb-1\Rightarrow b+3\ge kb\) (1)
NẾU: \(k\ge5\Rightarrow kb\ge5b=b+4b\ge b+4>b+3\) (2)
TỪ (1) VÀ (2) => LOẠI.
=> Nếu \(k=4\Rightarrow b+3\ge4b\Rightarrow1\ge b\Rightarrow b=1\) (DO \(b\ge1\left(b\inℕ^∗\right)\))
=> \(3⋮a\Rightarrow a=\left\{1;3\right\}\)
=> \(\hept{\begin{cases}a=1;b=1\\a=3;b=1\end{cases}}\)
NẾU k = 3 \(\Rightarrow b+3\ge3b\Rightarrow3\ge2b\Rightarrow b=1\)và kết quả giống tương tự TH1 k = 4
BẠN XÉT NỐT 2 TRƯỜNG HỢP k=1; k=2 nhaaaaaa
Tìm tất cả cách số nguyên dương n có tính chất: Vói mọi a, b nguyên dương, nếu a^2 x b + 1 chia hết cho n thì a^2 + b cũng chia hết cho n
a) tìm số nguyên dương a sao cho a2017+a2015+1 là số nguyên tố
b) với a,b là các số nguyên dương sao cho a+1 và b+2013 chia hết cho 6 . C/m an+a+b chia hết cho 6
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
Cho 2 số nguyên dương a và b. Xét 4 khẳng định sau
1, (a+1) chia hết cho b
2 a=2b+5
3 a+b chia hết cho 3
4 a+7b là số nguyên tố
Biết có 1 sai , 3 đúng. Tìm a,b
a) tìm số dư khi chia 2^2011 cho 31
b) với a,b là các số nguyên dương sao cho a+1 và b+2007 chia hết cho 6. Chứng minh rằng : 4^a+a+b chia hết cho 6
b, a+1 và b+2007 chia hết cho 6
=> a+1 và b+2007 đều chẵn
=> a và b đều lẻ
=> a+b chẵn
Mà a là số nguyên dương nên 4^a chẵn
=> 4^a+a+b chẵn
=> 4^a+a+b chia hết cho 2 (1)
Lại có : a+1 và b+2007 chia hết cho 3
=> a chia 3 dư 2 và b chia hết cho 3
=> a+b chia 3 dư 2
Mặt khác : 4^a = (3+1)^a = B(3)+1 chia 3 dư 1
=> 4^a+a+b chia hết cho 3 (2)
Từ (1) và (2) => 4^a+a+b chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
Tk mk nha
Vì chưa thấy ai giải câu a nên thầy sẽ giải hộ nhé
Ta có \(32\equiv1\left(mod31\right)\Rightarrow32^{402}\equiv1^{402}=1\left(mod31\right)\)(Theo thuyết đồng dư)
nên \(32^{402}=2^{2010} \)chia 31 dư 1 suy ra \(2^{2011}\)chia 31 dư 2
Phần còn lại em tự làm nhé
Tìm số nhỏ nhất trong các số nguyên dương là bội của 2007 và có 4 CS cuối là 2008 (1)
Xét a , b là các số nguyên dương sao cho a + 1 và b + 2007 chia hết cho 6 . CMR : ( 4n + a + b ) chia hết cho 6 (2)
1/ Tìm số nguyên n sao cho n + 2 chia hết cho n -3
2/ Tìm tất cả các số nguyên a biết: (6a +1) chia hết cho ( 3a -1)
3/ tìm 2 số nguyên a , b biết :a > 0 và a. (b - 2) =3
3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}
Mà a > 0
=> a thuộc {1;3}
Ta có bảng kết quả:
a | 1 | 3 |
---|---|---|
b-2 | 3 | 1 |
b | 5 | 3 |
a)Tìm số nguyên dương x và y với x>y biết 2x+1 chia hết cho y và 2y+1 chia hết cho x
b)Tìm số nguyên tố x, y biết: 15x-7y=y^2
(cần gấp trong hôm nay)