so sanh A va B biet
A =\(\frac{5^{30}-1}{5^{32}-1}\)
B = \(\frac{5^{32}-1}{5^{34}-1}\)
so sánh
A = \(\frac{5^{30}-1}{5^{32}-1}\)
B = \(\frac{5^{32}-1}{5^{34}-1}\)
giải nhanh giùm mk nha
So sanh A va B, biet :
a)\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8};B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
b)\(A=\frac{7^{10}}{1+7+7^2+...+7^9};B=\frac{5^{10}}{1+5+5^2+...+5^9}\)
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)
so sanh M va N
M=\(\frac{19^{30}+5}{19^{31}+5}\)
N=\(\frac{19^{31}+5}{19^{32}+5}\)
Mình chỉ hướng dẫn bạn thôi nhé!
1. Nhân M vs 10 và N vs 10
2.Tách 10M thành 1 + ... và N cũng vậy.
3.So sánh.
Vậy nhé!
CHÚ Ý: bài toán sau: với \(\frac{a}{b}< 1,\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
\(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+14}{19^{32}+5+14}=\frac{19^{31}+19}{19^{32}+19}< \frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}< \frac{19^{30}+1+4}{19^{31}+1+4}=\frac{19^{30}+5}{19^{31}+5}\)
Rõ ràng N<1 nên theo N, nếu \(\frac{a}{b}< 1\Rightarrow\frac{a+n}{b+n}>\frac{a}{b}\)
=> \(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5.19}{19^{31}+5.19}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}\)\(=\frac{19^{30}+5}{19^{31}+5}\)
Vậy N<M
So sanh A va B
So sanh A va B.
So sanh A va B:
\(A=\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+...+\frac{1}{43}+\frac{1}{44}\)
\(B=\frac{5}{6}\)
so sanh a va b biet
A=\(\frac{1020^{1021}+5}{1020^{1022}+1}\)
B=\(\frac{2017^{2018}+3}{2017^{2019}+1}\)
giup minh lam nhe
So sánh A và B biét
A=\(\frac{19^{30}+5}{10^{31}+5}\)và B=\(\frac{19^{31}+5}{19^{32}+5}\)
A= \(\frac{2^{18}-3}{2^{20}-3}\)và B = \(\frac{2^{20}-3}{2^{22}-3}\)
A = \(\frac{1+5+5^2+.......+5^9}{1+5+5^2+.....+5^8}\) B = \(\frac{1+3+3^2+.....+3^9}{1+3+3^2+.......+3^8}\)
a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)
b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)
\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)
Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
c, Câu hỏi của truong nguyen kim
Hay so sanh A=\(\frac{3^{2003+5}}{3^{2001}+5}\)va B=\(\frac{3^{2001+1}}{3^{1999+1}}\)