Chứng minh 3 x 4 = 7
CHỨNG MINH: x10 -x7+x4-x3+x2+1>0
Chứng minh rằng |x−1|+|x−3|+|x−5|+|x−7| ≥ 8.
Ta thấy : `|x-1|+|x-5|=|x-1|+|5-x|>=|x-1+5-x|=4`
`|x-3|+|x-7|=|x-3|+|7-x|>=|x-3+7-x|=4`
`->|x-1|+|x-3|+|x-5|+|x-7|>=4+4=8` ( đpcm )
a) Chứng minh : \(7^6+7^5-7^4⋮55\)
b) Chứng minh : \(16^5+2^{15}⋮33\)
c) Chứng minh : \(81^7-27^9-9^{13}⋮405\)
a)
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\) chia hết cho 55 (đpcm )
b)
\(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33\) chia hết cho 33 (đpcm )
c)
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{22}\left(3^6-3^5-3^4\right)=3^{22}.405\) chia hết cho 405 (đpcm )
Chứng minh :
a) (x+4)(x+7)(x+8)(x+11)+36>=0 . Dấu "=" xảy ra khi nào ?
b) Cho a,b,c>0, a+b+c =1 :
Chứng minh
* 1/a+b +1/a+c +1/b+c>4
* a+2b+c>= 4(1-a)(1-b)(1-c)
-Schwarz: 1/(a+b)+1/(a+c)+1/(b+c) >/ 9/2(a+b+c)=9/2=4,5>4 -> đpcm
-ta có VT=4(1-a)(1-b)(1-c)=4(b+c)(1-b)(1-c)=[4(b+c)(1-c)](1-b)
Áp dụng bdt cauchy dạng 4ab </ (a+b)^2
VT </ (b+c+1-c)^2(1-b)=(b+1)^2(1-b)=(b+1)[(1+b)(1-b)]=(b+1)(1-b^2) </ 1+b = a+2b+c (đpcm)
cho x+y=3, chứng minh x^2*y=<4
chứng minh rằng :A=7+72+73+74+...+74n chia hết cho 400
Ta có: \(A=7+7^2+7^3+7^4+...+7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\)
\(A=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(A=7\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(A=7.400+7^5.400+...+7^{4n-3}.400\)
\(A=400.\left(7+7^5+..+7^{4n-3}\right)\)luôn chia hết cho 400
A=7+72+74+74+...+74n-3+74n-2+74n-1+74n
A=(7+72+73+74)+...+(74n-3+74n-2+74n-1+74n)
A=7(1+7+72+73)+...+74n-3(1+7+72+73)
A=7.400+75.400+...+74n-3.400
A=400.(7+75+..+74n-3)luôn chia hết cho 400
Chứng minh rằng 2+2^2+2^3+2^4 +.........+2^99 chia hết cho 7
ch P= 1+3+3^2+3^3+3^4+3^5+3^6+3^7
chứng minh p chia hết cho 4
\(P=1+3+3^2+...+3^7\)
\(=\left(1+3\right)+...+\left(3^6+3^7\right)\)
\(=1\left(1+3\right)+...+3^6\left(1+3\right)\)
\(=1\cdot4+...+3^6\cdot4\)
\(=4\cdot\left(1+...+3^6\right)⋮4\)
Đpcm
p=1+3+32+33+34+35+36+37
p=(1+3)+(32+33)+(34+35)+(36+37)
p=4.1+(32.1+32.3)+(34.1+34.3)+(36.1+36.3)
p=4.1+32(1+3)+34(1+3)+36(1+3)
p=4.1+32.4+34.4+36.4
p=4.(1+32+34+36)
vay P chia het cho 4
Chứng minh rằng |x+1|+|x+3|+|x+5| ≥ 4.
Mk đg cần gấp. TKS mn
Áp dụng tính chất `|P|>=P,|P|>=-P`
`=>{(|x+5|>=x+5),(|x+1|>=-x-1):}`
`=>|x+5|+|x+1|>=x+5-x-1=4`
Mặt khác:`|x+3|>=0`
`=>|x+1|+|x+3|+|x+5|>=4(đpcm)`
Dấu "=" xảy ra khi `x=-3`