Cho tứ giác ABCD, các tia phân giác của các góc A,B,C,D tạo thành một tứ giác. Khi đó tổng 2 góc đối của tứ giác bằng bao nhiêu?
( giải chi tiết hộ mình nha!)
Cho tứ giác ABCD . Các tia phân giác của các góc A,B,C,D cắt nhau tạo thành một tứ giác. Khi đó tổng hai góc đối của tứ giác đó bằng ?
2 góc đối của tứ giác đó có tổng bằng 180 độ
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath
2. Cho tứ giác ABCD. Các tia phân giác góc A,B,C,D cắt nhau thành 1 tứ giác. Chứng minh tứ giác đó có tổng 2 góc đối = 180o.
giải hộ tui =(((
Cho tứ giác ABCD. Các tia phân giác góc A,B,C,D cắt nhau tạo thành một tứ giác. Chứng minh tứ giác đo có tổng hai góc đối nhau bằng 180 độ
lm hộ mk đi please ;(
1. Cho tứ giác ABCD có góc C - góc D = 10o. Các tia phân giác góc A và B cắt nhau tại I. Biết góc AIB = 65o. Tính góc C và D.
2. Cho tứ giác ABCD. Các tia phân giác góc A,B,C,D cắt nhau thành 1 tứ giác. Chứng minh tứ giác đó có tổng 2 góc đối = 180o.
3. Tứ giác ABCD có góc A = góc C = 90o. Chứng minh phân giác góc B và D // với nhau hoặc trùng nhau.
cho tứ giác abcd các tia phân giác của các góc a b c d cắt nhau tạo thành 1 tứ giác . chứng minh tứ giác nhận được có các góc đối bù nhau
Gọi giao điểm các đường phân giác trong tứ giác ABCD lần lượt là M, N, P, Q như hình vẽ bên trên.
Xét tam giác APB có: \(\widehat{APB}=180^o-\widehat{PAB}-\widehat{PBA}=\frac{360^o-\widehat{DAB}-\widehat{CBA}}{2}\)
Tương tự xét tam giác MCD ta cũng có:
\(\widehat{DMC}=\frac{360^o-\widehat{ADC}-\widehat{BCD}}{2}\)
Suy ra \(\widehat{QMN}+\widehat{QPN}=\frac{360^o-\widehat{ADC}-\widehat{BCD}}{2}+\frac{360^o-\widehat{DAB}-\widehat{ABC}}{2}\)
\(=\frac{720^o-360^o}{2}=180^o\)
Do tổng 4 góc trong một tứ giác bằng 360o nên ta cũng có \(\widehat{MQP}+\widehat{MNP}=360^o-180^o=180^o\)
Vậy tứ giác MNPQ có các góc đối bù nhau.
cho tứ giác abcd các tia phân giác của các góc a b c d cắt nhau tạo thành 1 tứ giác . chứng minh tứ giác nhận được có các góc đối bù nhau
Cho tứ giác ABCD. Các tia phân giác \(\widehat{A},\widehat{B},\widehat{C},\widehat{D}\)cắt nhau tạo thành một tứ giá. Chứng minh tứ giác đó có tổng hai góc đối bằng 1800.
Cho tứ giác ABCD, các tia phâ giác của các góc A,B,C,D cắt nhau theo thứ tự E,F,H,G tạo thành một tứ giác. Chứng minh EFHG có tổng hai góc đối bù nhau
Ta có : góc F =\(180^o-\frac{\widehat{A}+\widehat{B}}{2}\)
Góc G = \(180^o-\frac{\widehat{B}+\widehat{C}}{2}\)( LIÊN HỆ GIỮA BA GÓC TRONG TAM GIÁC )
Cộng từng vế hai đẳng thức trên ta được :
\(\widehat{F}+\widehat{G}=360^o-\frac{1}{2}\left(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}\right)=360^o-\frac{1}{2}.360^o\)
nên góc F + góc G =\(180^o\)
Lại có :
\(\widehat{E}+\widehat{F}+\widehat{H}+\widehat{G}=360^o\)
hay góc E + góc H + \(180^o\)= \(360^o\)
nên góc E + góc H = \(180^o\)
Vậy tứ giác EFHG là tứ giác có tổng hai góc đối bù nhau .
Chúc bạn học tốt !!!
Cho tứ giác ABCD có các đường phân giác trong tạo thành 1 tứ giác.Chứng minh tứ giác đó có các góc đối bù nhau(Giải theo cách lớp 8 giúp mình)
Tất cả giao điểm được thể hiện trên hình ( vẽ hơi xấu )
Xét ΔADQΔADQ có: MQPˆ=DAQˆ+ADQˆMQP^=DAQ^+ADQ^ (góc ngoài tam giác)
Xét ΔBCNΔBCN có : MNPˆ=BCNˆ+CBNˆMNP^=BCN^+CBN^
⟹MQPˆ+MNPˆ=DAQˆ+ADQˆ+BCNˆ+CBNˆ=1/2(ABCˆ+BCDˆ+CADˆ+DABˆ)=1/2.360o=180o
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath