Chứng minh rằng:
a) ab + ba chia hết cho 11
b) ababab chia hết cho 10101
chứng minh rằng
a)ab+ba chia hết cho11
b)ababab chia hết cho 10101
a) ab+ba
= a.10+b+b.10+a
=11a+11b
=11(a+b) chia hết cho 11.
b,
ababab = 10101 . ab
=> ababab chia hết cho 10101
ab + ba = (a . 10 +b) + ( b . 10 + a)
= ( a . 10 +a ) + (b . 10 + b)
= a . (10 + 1 ) + b .( 10 + 1)
= a . 11 + b . 11
= 11 .( a + b) : 11
Vậy ab + ba : 11
B) ababab = ab0000 + ab00 + ab
= ab . 10000 + ab .100 + ab
= ab . (10000 + 100 + 1)
= ab . 10101 : 11
Vậy ababab : 11
tick đúng cho mình nha
khó lăm tớ mới làm ra đó
CMR: ab+ba chia hết cho 11
ababab chia hết cho 10101
CMR: 21+12 chia hết cho 11
121212 chia hết cho 10101
ab+ba= 10a+b+10b+a=11a+11b chia hết cho11
Chứng minh rằng
a) ab + ba chia hết cho 11
b) ab - ba chia hết cho 9 với a > b
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)
Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)
a)ab+ba
=a.10+b.1+b.10+a.1
=a.10+a.1+b.10+b.1
=a.(10+1)+b.(10.1)
=a.11+b.11
=11.(a+b)⋮11(vì 11⋮11)
b)ab - ba
= 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b = 9(a - b)
Vậy ta suy ra 9(a - b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)
cho x, y, z thuộc Z. Chứng min rằng:
a, Nếu 3x^2+2y chia hết cho 11 thì 15x^2-12y chia hết cho 11
b, Nếu 2x+3y^2 chia hết cho 7 thì 6x+16y^2 chia hết cho 7
Lời giải:
a.
\(3x^2+2y\vdots 11\Leftrightarrow 5(3x^2+2y)\vdots 11\)
$\Leftrightarrow 15x^2+10y\vdots 11$
$\Leftrightarrow 15x^2+10y-22y\vdots 11$
$\Leftrightarrow 15x^2-12y\vdots 11$ (đpcm)
b.
$2x+3y^2\vdots 7$
$\Leftrightarrow 3(2x+3y^2)\vdots 7$
$\Leftrightarrow 6x+9y^2\vdots 7$
$\Leftrightarrow 6x+9y^2+7y^2\vdots 7$
$\Leftrightarrow 6x+16y^2\vdots 7$ (đpcm)
chứng minh rằng với ab thuộc N thì:
1,abab chia hết cho 11
2,aaabbb chia hết cho 37
3,abcabc chia hết cho 7,11,13
4,ababab chia hết cho10101
5,abab-baba chia hết cho 9
1) cm: abab chia hết cho 101
Ta có : ab . 101 = ab . ( 100 + 1) = ab00 + ab = abab
=> abab chia hết cho 101 ( not 11)
2) ta có: aaabbb = aaa.1000+ bbb
= a.111.1000 + b.111
= a.37.3.1000+ b.37.3
= 37(3000a+ 3b) chia hết cho 37
3)
Ta có: abcabc
= abc. 1000 + abc
= abc. 1001
= abc. 143. 7
= abc . 11 . 13. 7 chia hết cho 7; 11; 13
4) Ta có: ababab = abab.100+ ab
= (ab.100 + ab) .100+ab
= ab.10000+ ab.100 + ab
= ab . 10101
=> ababab chia hết cho 10101
5)
abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
chứng minh rằng
ab-ba chia hết cho 9 (với a>b)
abba chia hết cho 11
aaabbb chia hết cho 37
ababab chia hết cho 7
Chứng minh rằng:
a) Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3.
b) Tích của bốn số tự nhiên liên tiếp luôn chia hết cho 4
chứng minh rằng:
ababab chia hết cho 7
aabbb chia hết cho 37
a)Ta co :
ab*10000+ab*100+ab*1
=ab*(10000+100+1)
=ab*10101 Ma 10101:7
=> ababab:7
b) a*100000+a*10000+a*1000+b*100+b*10+b*1
=a*111000+b*111
=ab*111111 Ma 111111:37
=aaabbb:37
ababab=ab.101010=ab.14430.7\(\Rightarrow\)ababab\(⋮\)7
aaabbb=111.1000=37.3.1000\(\Rightarrow\)aabbb\(⋮\)37
chứng minh rằng nếu (a+b)chia hết cho 2 thì (a+3b) chia hết cho 2 và (5a+11b)chia hết cho 2