Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thao
Xem chi tiết
vu minh hang
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 5 2016 lúc 10:08

a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))

Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có : 

\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)

b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))

Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)

Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có : 

\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)

NguyenHa ThaoLinh
Xem chi tiết
Minh Nguyen
5 tháng 4 2020 lúc 14:15

1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)

\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)

2) Để \(P=2\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)

\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)

\(\Leftrightarrow6\sqrt{x}=4\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)

\(\Leftrightarrow x=\frac{4}{9}\)

Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)

3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)

Thay \(x=\frac{1}{4}\)vào P, ta được :

\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)

4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)

\(\Leftrightarrow9x-3\sqrt{x}-6=0\)

\(\Leftrightarrow3x-\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=3x-2\)

\(\Leftrightarrow x=9x^2-12x+4\)

\(\Leftrightarrow9x^2-13x+4=0\)

\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)

Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\)\(x=1\left(tm\right)\)

Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)

5) Để biểu thức nhận giá trị nguyên

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)

\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)

\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)

\(\Leftrightarrow8⋮2-\sqrt{x}\)

\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)

Ta loại các giá trị < 0

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)

\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

\(\)

Khách vãng lai đã xóa
Hoàng Kiệt
Xem chi tiết
0o0 cô nàng ở đâu xinh t...
Xem chi tiết
Vũ Tiến Manh
10 tháng 10 2019 lúc 15:07

Q= \(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)+\(\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)\(\frac{2\sqrt{x}-9-\left(x-9\right)+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) Q <1 <=> \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}< 1< =>1+\frac{4}{\sqrt{x}-3}\)<1 <=> \(\frac{4}{\sqrt{x}-3}< 0\) <=> \(\sqrt{x}-3< 0< =>\sqrt{x}< 3\)<=> \(0\le\)x< 9

c) Q = 1 \(+\frac{4}{\sqrt{x}-3}\) là số nguyên khi 4 chia hết cho\(\sqrt{x}-3\) <=> \(\sqrt{x}-3=1;\sqrt{x}-3=-1;\sqrt{x}-3=2\);\(\sqrt{x}-3=-2;\sqrt{x}-3=4;\sqrt{x}-3=-4\)

<=> x= 16; x = 4; x = 25; x = 1 ; x = 49

Nguyễn Linh Chi
10 tháng 10 2019 lúc 15:24

Bài làm của bạn Mạnh có hai lỗi:

+) ĐKXĐ: \(\hept{\begin{cases}x-5\sqrt{x}+6\ne0;\sqrt{x}-2\ne0;3-\sqrt{x}\ne0\\x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4;9\end{cases}}\)

+) Vì ko có điều kiện nên câu c chưa loại nghiệm. x = 4 loại nhé

Trần Anh Tuấn
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
Phạm Linh Chi
9 tháng 4 2018 lúc 0:12

Ta có :\(\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)

để A có giá trị nguyên thi \(\sqrt{x}+3\inƯ\left(8\right)\)

KẺ BẢNG TÌM GIÁ TRỊ x =1, 25

Trần Anh
Xem chi tiết
trần duyên
Xem chi tiết