chứng minh 4100-1chia hết cho 5
Cho n thuộc N. Chứng minh rằng 5n-1chia hết cho 4
Cho 10k-1chia hết cho 19 với k>10
Chứng minh rằng:
103k-1chia hết cho 19
Đặt \(10^k-1=19n\left(n\in Nsao\right)\)
\(\Rightarrow10^k=19n+1\Rightarrow\left(10^k\right)^3=\left(19n+1\right)^3\Rightarrow10^{3k}-1=\left(19n\right)^3+38n\)
Ta thấy\(\left(19n\right)^3⋮19;38n⋮19\Rightarrow\left(19n\right)^3+38n⋮19\)
Hay\(10^{3k}-1⋮19\)
\(10^{2k}-1=10^{2k}-10^k+10^k-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
\(10^{3k}-1=10^{3k}-10^k+10^k-1=10^k\left(10^{2k}-1\right)+10^k-1⋮19\)
bài 1 chứng minh rằng với mọi stn n
a)24n+1+3 chia hết cho 5
b)24n+2 +1 chia hết cho 5
c) 92n+1chia hết cho 10
cảm ơn mọi người nha
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
Chứng minh rằng:6100-1chia hết cho 5.
Bạn nào trả lời nhanh mk tick cho
+ Cách 1:Do 6 chia 5 dư 1, mũ lên bao nhiẻu vẫn chia 5 dư 1
=> 6100 chia 5 dư 1
=> 6100 - 1 chia hết cho 5 ( đpcm)
+ Cách 2: Ta có:
6100 - 1 = (64)25 - 1 = (...6)25 - 1 = (...6) - 1 = (...5) chia hết cho 5
=> đpcm
Ta có :
6100 - 1
= (64)25 - 1 = .....6 - 1 = ....5 chia hết cho 5
Vậy 6100 - 1 chia hết cho 5 (ĐPCM)
Ủng hộ mk nha !!! ^_^
Vì 6^100 có tận cùng là 6
=>6^100-1 có tận cùng là 5
=>6 ^100- 1 chia hết cho 5
Vay........
cho n thuộc N , n lẻ . Chứng minh 1999 mũ n +1chia hết cho cả 2 và 5
\(1999^n+1\)
ta có: n là số mũ lẻ =>\(1999^n\)có CSTC là 9
=> \(1999^n+1\)có cstc là 0 =>\(1999^n+1⋮2,5\)
P/S: vt đề cẩn thận có thể là \(1999^{n+1}\)hay \(1999^n+1\)
chứng minh 5n-1chia hết cho4
5 chia 4 dư 1
=>5n chia 4 dư 1
=>5n-1 chia 4 dư 1-1
=>5n 1 chia hết cho 4
chứng minh 5n+2+26. 5n+82n+1chia hết cho 59 với n thuộc N*
\(=5^n.\left(5^2+26\right)+64^n.8\)
\(=5^n.\left(59-8\right)+64^n.8\)
\(=5^n.59-5^n.8+64.8\)
\(=5^n.59-8.\left(64^n-5^n\right)\)
vì 64-5 chia hết cho 59 => 64n-5n chia hết cho 59
vậy.....
chứng minh 9^11+1chia hết cho 10
Ta thấy:
9 đồng dư với 9(mod 10)
=>9 đồng dư với -1(mod 10)
=>911 đồng dư với (-1)11(mod 10)
=>911 đồng dư với -1(mod 10)
=>911+1 đồng dư với -1+1(mod 10)
=>911+1 đồng dư với 0(mod 10)
=>911+1 chia hết cho 10
=>ĐPCM
ta có : 9^11 = 9^8.9^3 = 9^2.4 . (...9) = (...1) . (...9) = (...9)
=> 9^11+1= ( ...9) + 1 =(...0) chia hết cho 10
vậy 9^11+1 chia hết cho 10
chứng minh 9^11+1chia hết cho 10