CMR \(11^{n+2}+12^{2n+1}⋮133\)( n lẻ )
CMR 11n+2+122n+1 ⋮ 133
CMR:11n+2+122n+1 chia hết cho 133(n E N)
11n+2+122n+1
=121.11n+144n.12
(133-12).11n+144n.12
11n.133-11n.12+144n.12
11n.133+144n.12-11n.12
=11.133+12(144n-11n)
Ta cso 144n-11n : 144-11=133
11.133: 133
Vậy.........
CMR:11n+2+122n+1 chia hết cho 133(n E N)
CMR
11n+2+122n+1 ⋮133
Ta có:
11n + 2 + 122n + 1
= 11n . 112 + (122)n . 12
= 11n . 121 + 144n . 12
= 11n . (121 + 12) + (144n - 11n) . 12
= 11n . 133 + (144n - 11n) . 12
Lại có: 144n \(\equiv\) 11n (mod 133)
\(\Rightarrow\) 144n - 11n \(⋮\) 133
\(\Rightarrow\) 144n - 11n \(⋮\) 133
\(\Rightarrow\) (144n - 11n) . 12 \(⋮\) 133
\(\Rightarrow\) 11n . 133 + (144n - 11n) . 12 \(⋮\) 133
Ta có:
$11n+2 + 122n+1 + 122$
$= 112 x 11n + 12 x (122)n + 122$
$= 121 x 11n + 12 x (122)n + 144$
$= (133 - 12) x 11n + 12 x (122)n + 144$
$= 133 x 11n - 12 x 11n + 12 x 144n + 144$
$= 133 x 11n + 12 x (144n - 11n) + 144$
Vì:
$133 x 11n ⋮ 133$
$12 x (144n - 11n) = 12 x (144 - 11) x P = 12 x 133 x P ⋮ 133$
$144$ chia cho $133$ dư $11$
Suy ra: $11n+2 + 122n+1 + 122$ chia cho $133$ dư $11$
Ta có:
11n+2 + 122n+1 + 122
= 112 x 11n + 12 x (122)n + 122
= 121 x 11n + 12 x (122)n + 144
= (133 - 12) x 11n + 12 x (122)n + 144
= 133 x 11n - 12 x 11n + 12 x 144n + 144
= 133 x 11n + 12 x (144n - 11n) + 144
Vì:
133 x 11n ⋮ 133
12 x (144n - 11n) = 12 x (144 - 11) x P = 12 x 133 x P ⋮ 133
144 chia cho 133 dư 11
Suy ra: 11n+2 + 122n+1 + 122 chia cho 133 dư 11
CMR: 11n+2+122n+1 chia hết cho 133
CMR : 11^n+2+ 12^2n+1 chia hết cho 133, với mọi N thuộc N
11^n+2 + 12^2n+1
= 121*11^n + 144^n*12
= (133-12)11^n + 144^n*12
= 133*11^n + 12*(144-11)
= 133*11^n + 12*133
= 133(11^n + 12) chia hết cho 133.
\(11^{n+2}+12^{2n+1}=11.2.11^n+12.1.12^{2n}\)
\(=121.11^n+12.144^n\)
\(\left(133-12\right).11^n+12.144^n\)
\(133.11^n+\left(144^n-11^n\right).12=133.11^n+133^n.12\)
133.11^n chia hết cho 133
133^n.12 chia hết cho 133
=> 11^n+2 + 12 ^2n+1 chia hết cho 133
la 133 nhe chac chan 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000% luon neu khong minh se chet
CMR 11n+2 + 122n+1 chia hết cho 133
b) Với n=1 thì hiển nhiên đúng.
Giả sử mệnh đề đúng với n=k tức:
11k+1+122k-1 chia hết cho 133
Với n=k+1 thì:
11k+2+122k+1=11k+1.11+122k-1.122=11(11k+1+122k-1)+133.122k-1 luôn luôn chia hết cho 133.
Vậy mệnh đề đúng với n=k+1 => dpcm.
tick nha
bạn bấm vào dòng chữ xanh này nhé chứng minh : 11n+2+122n+1 chia hết cho 133
CMR 11n+2 + 122n+1 chia hết cho 133
CMR : 11n+2 + 122n+1 chia hết cho 133
11^n+2+12^2n+1=11^n.11^2+12^2n.12=11^n.121+(12^2)^n.12=11^n.121+144^n.12=11^n.(133-12).144^n.12=(11^n.133-11^n.12)+144^n.12
=11^n.133+(144^n-11^n).12
Vi 11^n.133 chia het cho 133; 144^n-11^n chia het cho 133
suy ra (144^n-11^n).12 chia het cho 133
Chung to 11^n+2+12^2n+1 chia het cho 133.