so sánh A, B biết:
A = \(\frac{10^7+5}{10^8-8}\)
B=\(\frac{10^8+5}{10^8-8}\)
1. So Sánh: \(A=\frac{10^7+5}{10^7-8};B=\frac{10^8+6}{10^8-7}\)
dễ thôi
A=\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
B=\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
\(10^8>10^7nen10^8-7>10^7-8\)
=> \(\frac{13}{10^8-7}< \frac{13}{10^7-8}hayB< A\)
\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1-\frac{13}{10^7-8}\);\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1-\frac{13}{10^7-7}\)
Vì \(\frac{13}{10^8-8}< \frac{13}{10^7-7}\)nên A>B
Ta có :
\(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Mà \(\frac{13}{10^7-8}>\frac{13}{10^8-7}\left(10^7-8< 10^8-7\right)\)
\(\Rightarrow1+\frac{13}{10^7-8}>1+\frac{13}{10^8-7}\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
~ Ủng hộ nhé
So sánh A và B:
a)A=\(\frac{10^7+5}{10^7-8}\); B=\(\frac{10^8+6}{10^8-7}\)
\(A=\frac{10^7+5}{10^7-8}=\frac{\left(10^7-8\right)+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{\left(10^8-7\right)+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\) nên \(\frac{13}{10^7-8}>\frac{13}{10^8-7}\)
\(\Rightarrow1+\frac{13}{10^7-8}>1+\frac{13}{10^8-7}\) do đó \(A>B\)
So sánh A=\(\frac{10^7+8}{10^7-8}\)B=\(\frac{10^8+8}{10^7-8}\)
10^7+8/10^7-8<10^8+8/10^7-8
cho mik nhé
thnks !!!!!!!!!!!!!
bài 1 So sánh
a)\(A=\frac{3}{8^3}+\frac{7}{8^4}\) ; \(B=\frac{7}{8^3}+\frac{3}{8^4}\)
b)\(A=\frac{10^{1992}+1}{10^{1991}+1};B=\frac{10^{1993}+1}{10^{1992}+1}\)
c)\(A=\frac{10^7+5}{10^4-8};B=\frac{10^8+6}{10^8-7}\)
d)\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8};B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
e)\(A=\frac{2011}{2012}+\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)
So sánh A và B biết:
a) \(A=\frac{3}{83}+\frac{7}{84};B=\frac{7}{83}+\frac{3}{84}\)
b) \(A=\frac{10^7+5}{10^7-8};B=\frac{10^8+6}{10^8-7}\)
Lời giải:
a.
\(A-B=\frac{7-3}{84}-\frac{7-3}{83}=\frac{4}{84}-\frac{4}{83}<0\\ \Rightarrow A< B\)
b.
\(A-1=\frac{13}{10^7-8}\\ B-1=\frac{13}{10^8-7}\)
Hiển nhiên $10^7-8< 10^8-7$
$\Rightarrow \frac{13}{10^7-8}> \frac{13}{10^8-7}$
$\Rightarrow A-1> B-1\Rightarrow A> B$
so sánh A và B :
a) A = \(\frac{20}{39}+\frac{22}{27}+\frac{18}{43}\) ; B = \(\frac{14}{39}+\frac{22}{29}+\frac{18}{41}\)
b) A = \(\frac{3}{8^3}+\frac{7}{8^4}\) , B= \(\frac{7}{8^3}+\frac{3}{8^4}\)
c) A = \(\frac{10^7+5}{10^7-8}\) , B = \(\frac{10^8+6}{10^8-7}\)
d) A = \(\frac{10^{1992}+1}{10^{1991}+1}\), B = \(\frac{10^{1933}+1}{10^{1992}+1}\)
b/ Ta có
\(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}\)
\(=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
c/ Đặt \(10^7=a\)thì ta có
\(A=\frac{a+5}{a-8};B=\frac{10a+6}{10a-7}\)
Giả sử A>B thì ta có
\(\frac{a+5}{a-8}>\frac{10a+6}{10a-7}\)
\(\Leftrightarrow10a^2+43a-35>10a^2-574a-348\)
\(\Leftrightarrow617a+313>0\)(đúng)
Vậy A>B
c/ Đặt \(10^{1991}=a\)thì ta có
\(A=\frac{10a+1}{a+1};B=\frac{100a+1}{10a+1}\)
Giả sử A>B thì ta có
\(\frac{10a+1}{a+1}>\frac{100a+1}{10a+1}\)
\(\Leftrightarrow\left(10a+1\right)^2>\left(100a+1\right)\left(a+1\right)\)
\(\Leftrightarrow-81a>0\)(sai)
Vậy A < B
a/ Thì quy đồng là ra nhé
a,b,c,d giống nhau cùng nhân A và B với 1 số nào đấy tách ra r` so sạmh
mọi người giúp tớ nhanh nhanh với nhé, 1 h tớ phải nộp rồi
So sánh A và B biết:
a) A =\(\frac{10^7+5}{10^7-8}\) B =\(\frac{10^8+6}{10^8-7}\)
B) A =\(\frac{15^{16}-13}{15^{16}+7}\) B = \(\frac{16^{17}-12}{16^{17}+8}\)
So sánh:
M=\(\frac{10^7+5}{10^7-8}\) và N=\(\frac{10^8+6}{10^8-7}\)
\(M=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(N=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Ta có \(10^8-7>10^7-8\) \(=>\frac{13}{10^8-7}< \frac{13}{10^7-8}\) \(=>M< N\)
Vậy M<N
n<m nha ban
chuc ban hoc gioi
tk cho minh nha
so sánh A và B:
A=\(\frac{10^7+5}{10^7-8}\) ; B=\(\frac{10^8+6}{10^8-7}\)
huhu ai giup mik voi
\(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8}{10^7-8}+\frac{13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7}{10^8-7}+\frac{13}{10^8-7}\)
Dễ thấy 107 - 8 < 108 - 7 \(\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\)
\(\Rightarrow A>B\)