Cho tam giác ABC.Trên AB lấy E ,trên AC lấy F sao cho EF//BC.CMR:\(S_{CEF}\le\frac{1}{4}S_{ABC}\)
Cho tam giác ABC.Trên AB lấy điểm E và trên AC lấy điểm F sao cho EF//BC.CMR:\(S_{CEF}\le\frac{1}{4}S_{ABC}\)
cho tam giác ABC vuông tại A, đường cao AH, trên AB,AC lấy điểm M,N sao cho AM=AN=AH.Chứng minh rằng \(\frac{S_{AMN}}{S_{ABC}}\le\frac{1}{2}\)
Gọi I là trung điểm của BC
Xét tam giác ABC vuông tại A có AI là đường trung tuyến nên \(AI=\frac{1}{2}BC\)
Theo quan hệ đường xiên và đường vuông góc ta có \(AH\le AI\Rightarrow AH\le\frac{1}{2}BC\)\(\Rightarrow\frac{AH}{BC}\le\frac{1}{2}\)(1)
Ta có \(\frac{S_{AMN}}{S_{ABC}}=\frac{\frac{1}{2}AM.AN}{\frac{1}{2}AH.BC}=\frac{AH^2}{AH.BC}=\frac{AH}{BC}\)(2)
Từ (1) (2) suy ra \(\frac{S_{AMN}}{S_{ABC}}\le\frac{1}{2}\)
không rãnh chút nào, bận rộn muốn sỉu. đây là bất đắc dĩ thôi
Cho tam giác ABC.Gọi D là trung điểm của cạnh BC. Trên hai cạnh AB và AC lần lượt lấy 2 điểm E và F.Chứng minh rằng \(S_{DÈF}\le\frac{1}{2}S_{ABC}\).Với vị trí nào của 2 điểm E và F thì \(S_{DEF}\)đạt giá trị lớn nhất
2. Cho tam giác ABC đều, cạnh a. Trên tia đối của tia AB, CA, BC lần lượt lấy D, E, F sao cho AD = \(\frac{1}{2}\)AB , CE = \(\frac{1}{2}\)AC, BF = \(\frac{1}{2}\)BC.
a) Tính SABC
b) Chứng minh tam giác DEF đều
c) Tính tỉ số của \(\frac{S_{DEF}}{S_{ABC}}\)
a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2
Tính được AH theo định lý Pytago: AH = a3√2
=> Diện tích của tam giác ABC là: 12.a3√2.a=a23√4
b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều
c) Tam giác DEF và tam giác ABC đồng dạng
=> SDEF/SABC = (DE/AB)2
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BC =5cm. Kẻ BD là tia phân giác của góc B, trên cạnh AB lấy điểm E sao cho \(AE=\frac{3}{4}AB\), DE cắt BC tại F. Tính tỉ số \(\frac{S_{BÈF}}{S_{BEDC}}\)
2. Cho tam giác ABC đều, cạnh a. Trên tia đối của tia AB, CA, BC lần lượt lấy D,E, F sao cho AD = 1/2 AB, CE = 1/2 AC, BF = 1/2 BC
a) TÍnh diện tích ABC
b) Chứng mình tam giác DEF đều
c) Tính tỉ số của \(\frac{S_{DEF}}{S_{ABC}}\)
Làm ơn giúp em giải chi tiết câu c) với
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F theo thứ tự là hình chiếu của H trên AB, AC. Chứng minh:\(S_{AEHF}\le\dfrac{1}{2}S_{ABC}\). Dấu bằng xảy ra khi và chỉ khi tam giác ABC vuông cân tại A
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F theo thứ tự là hình chiếu của H trên AB, AC. Chứng minh: \(S_{AEHF}\le\dfrac{1}{2}S_{ABC}\). Dấu bằng xảy ra khi và chỉ khi tam giác ABC vuông cân tại A
Cho tam giác ABC về phía ngoài tam giác tại đỉnh A kẻ Ax vuông góc vớ AB và lấy E trên Ax sao cho AE=AB (C và E ở hai phía đối với AB) kẻ Ay vuông góc với AC và lấy điểm F trên Ay sao cho AF bằng AC (F và B ở hai phía đối vớ AC)lấy M là trung điểm của BC.CMR:
a,AM bằng 1/2 EF.
b,đường thẳng AM vuông với EF