cho a,b>0, n \(\in\)N. CMR \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\)
Cho \(a\ge0\),\(b\ge0\),n\(\in N\).CMR:\(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\)
Áp dụng BĐT Bernoulli ta có:
\(\left(\frac{2x}{x+y}\right)^n=\left(1+\frac{x-y}{x+y}\right)^n\ge1+\frac{n\left(x-y\right)}{x+y}\)
\(\left(\frac{2y}{x+y}\right)^n=\left(1-\frac{x-y}{x+y}\right)^n\ge1-\frac{n\left(x-y\right)}{x+y}\)
Cộng theo vế 2 BĐT trên ta có:
\(\left(\frac{2x}{x+y}\right)^n+\left(\frac{2y}{x+y}\right)^n\ge2\) Hay \(\frac{a^n+b^n}{2}\ge\left(\frac{a+b}{2}\right)^n\)
ten ten ten
1. Cho a,b,c>0 và a+b+c=1 CMR sigma\(\frac{a-bc}{a+bc}\le\frac{3}{2}\)
2. cho a,b,c>0 va abc=1 CMR sigma\(\frac{1}{a\left(b+1\right)}\ge\frac{3}{2}\)
3.(i think it is difficult for you)
ch a,b,c>0 CMR sigma\(\frac{b^2c^3}{a^2+\left(b+c\right)^3}\ge\frac{9abc}{4\left(3abc+ab^2+bc^2+ca^2\right)}\)
4. CMR với mọi n là số tự nhiên lớn hơn 1 thì \(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+...+\frac{1}{\sqrt{n^2+n}}< 1\)
bài 1
<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)
sử dụng tiếp cauchy sharws
Bài 2: đặt a=x/y, b=y/x, c=z/x
1/CMR: \(\forall n\)lẻ thì \(\left(\left(\frac{1+\sqrt{5}}{2}\right)^n+\left(\frac{1-\sqrt{5}}{2}\right)^n\right)^2\) là số chính phương
2/Cho a,b,c>0 và \(a^2+b^2+c^2\le3.CMR:\)
\(\frac{a}{a^2+2b+1}+\frac{b}{b^2+2c+1}+\frac{c}{c^2+2a+1}\le\frac{1}{2}\)
cho a,b,c>0 thỏa mãn a+b+c=1
Cmr: \(\frac{1}{a+b^2}+\frac{1}{b+c^2}+\frac{1}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cho a,b,c thỏa mãn \(\left\{{}\begin{matrix}a+b+c=1\\a^2+b^2+c^2\le\frac{1}{2}\end{matrix}\right.\)
Cmr : \(0\le a,b,c\le\frac{1+\sqrt{3}}{4}\)
Cho \(a,b\ge0;\)\(n\in N.\)Chứng minh rằng :
\(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}.\)
Ta thấy bđt đúng với n=1.
Giả sử bđt đúng với n=k. Ta cần c/m bđt đúng với n=k+1
Thật vậy ta có: \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\Leftrightarrow\left(\frac{a+b}{2}\right)^{k+1}\)\(\le\frac{a^{k+1}+b^{k+1}}{2}\)
\(\Leftrightarrow\left(\frac{a+b}{2}\right)^k.\frac{a+b}{2}\le\frac{a^{k+1}+b^{k+1}}{2}\left(1\right)\)
Ta có \(VT\left(1\right)=\left(\frac{a+b}{2}\right)^k.\frac{a+b}{2}\le\frac{a^k+b^k}{2}.\frac{a+b}{2}=\frac{a^{k+1}+a^kb+ab^k+b^{k+1}}{4}\)\(\le\frac{a^{k+1}+b^{k+1}}{2}\)
\(\Leftrightarrow\frac{a^{k+1}+b^{k+1}}{2}-\frac{a^{k+1}+ab^k+a^kb+b^{k+1}}{4}\ge0\Leftrightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\left(2\right)\)
Ta chứng minh (2): * Giả sử \(a\ge b\)và giả thiết cho \(a\ge-b\)\(\Leftrightarrow a\ge\left|b\right|\Leftrightarrow a^k\ge\left|b\right|^k\ge b^k\Rightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\)
* Giả sử \(a< b\)và giả sử \(-a< b\)\(\Leftrightarrow\left|a\right|^k< b^k\Leftrightarrow a^k< b^k\Leftrightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\)
Vậy bđt (2) luôn đúng \(\Rightarrowđpcm\)
Đổi: \(\left(\frac{a+b}{2}\right)^n=\frac{\left(a+b\right)^n}{2^n}=\frac{a^n+b^n}{2^n}\)
Vì: \(a^n+b^n=a^n+b^n\)
\(2^n\ge2\)
=> \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\)
a) cho a,b,c thỏa mãn a > c và b > c > 0. tìm số n nhỏ nhất để có bất đẳng thức sau :
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le n\sqrt{ab}\)
b) CMR với mọi số nguyên dương n
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
a) Bất đẳng thức đúng khi a = b = 2c
do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)
xảy ra khi n = 1
Thật vậy, ta có :
\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Vậy n nhỏ nhất là 1
b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)
do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)
\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
Cho a\(\ge b\),\(b\ge0\),n\(\in N\). Chứng minh rằng :\(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\)
a) CMR: (ax+by+cz)\(^2\)\(\le\)\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
b) Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2\)=1
CMR: \(\frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}\le\frac{9}{2\left(a+b+c\right)}\)