cho tam giác ABC, gọi O là trung điểm của AC, trên tia đối của tia OB lấy điểm D sao cho OB=OD
a)Cminh AB=CD
b)gọi M là trung điểm của AB,N là trung điểm của DC.Cminh ba điểm M,O,N thẳng hàng
Cho tam giác đều ABC , Trên tia đối của tia AB , lấy điểm D và trên tia đối của tia AC , lấy điểm E sao cho AD = AE . Gọi M,N lần lượt là trung điểm của AE , AB và CD . Chứng minh : tam giác MNP là tam giác đều .
Hình vẽ bn tự vẽ
Vì tam giác ABC đều nên góc BAC=60 độ
Mà góc EAD=góc BAC
Suy ra: góc EAD=60 độ
Ta lại có: AE=AD(gt)
Suy ra: tam AED đều có DM là đg trung tuyến
Suy ra DM cũng là đường cao
Xét tam giác vuông DMC có:
\(MP=\frac{1}{2}CD\)(1)
Tương tự: CN vuông góc AB
Xét tam giác vuông CND có:
\(NP=\frac{1}{2}CD\)(2)
Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh
Suy ra: CD=BE
Mà tam giác AEB có: MN là đường trung bình
Suy ra: \(MN=\frac{1}{2}BE\)
Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)
Từ (1);(2) và (3)
Vậy tam giác MNP đều
Chúc bn học tốt.
Mik đi hc đến 8h30 tối mới về nên làm hơi trễ
cho tam giác abc , kẻ bd vuông góc với ac , ce vuông góc với ab. Trên tia đối của tia de lấy điểm n, trên tia đối của tia ed lấy điểm m sao cho dm=en . Gọi o là trung điểm của bc
Chứng minh tam giác omn là tam giác cân
Cho tam giác ABC, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD=MB. Trên tia đối của tia BC lấy điểm E sao cho BE=BC. Gọi I là giao điểm của AB và DE. Chứng minh IA=IB
Cho tam giác ABC có AB = 5 cm ; AC = 9 cm ; BC = 12 cm . Gọi E là trung điểm của AB; D là trung điểm của AC . Trên tia CE lấy điểm M ; Trên tia BD lấy điểm N sao cho E là trung điểm của CM ; D là trung điểm của BN. Tính MN =?
Trả lời = tick
Bạn ghi đề sai rồi
Trên tia DB lấy N, EC lấy M mới đúng
Cho tam giác ABC có AB = 5 cm ; AC = 9 cm ; BC = 12 cm . Gọi E là trung điểm của AB; D là trung điểm của AC . Trên tia CE lấy điểm M ; Trên tia BD lấy điểm N sao cho E là trung điểm của CM ; D là trung điểm của BN. Tính MN =?
Trả lời = tick
Cho tam giác ABC. gọi D là trung điểm của BC, M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB
a) chứng minh tam giác AME = tam giác DMB
b) c/m: AE = BD và AE // BC
c) gọi K là giao điểm của DE và AC. c/m tam giác AKE = tam giác CKD
d) trên tia đối của tia MC lấy điểm F sao cho MF = MC. c/m A là trung điểm của EF
lm hộ mk nha
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
Cho tam giác ABC cân tại A, đường trung tuyến AH và đường cao BQ. Gọi M, N lần lượt là trung điểm AB, AC. O là giao điểm của MN và AH, CO cắt AB tại K. Gọi D là điểm đối xứng của H qua M.
a) Tam giác PQH là tam giác gì? Vì sao?
b) Cm: AB = 3AK
c) Gọi E là điểm đối xứng của A qua H. BF va CP là hai đường cao của tam giác BCE. Cm: tam giác FBQ là tam giác vuông.
d) HJ vuông góc AB tại J. Trên tia đối của tia HJ lấy G sao cho HG = AB. Cm: PG là tia phân giác của góc APB.
Cho tam giác đều ABC , Trên tia đối của tia AB , lấy điểm D và trên tia đối của tia AC , lấy điểm E sao cho AD = AE . Gọi M,N , P lần lượt là trung điểm của AE , AB và CD . Chứng minh : tam giác MNP là tam giác đều .
Giúp mình với , ai nhanh mình tick cho nhé !
Cho tam giác đều ABC , Trên tia đối của tia AB , lấy điểm D và trên tia đối của tia AC , lấy điểm E sao cho AD = AE . Gọi M,N lần lượt là trung điểm của AE , AB và CD . Chứng minh : tam giác MNP là tam giác đều .
GIúp mình với , ai nhanh mình tick nhé !
gọi M,N,P lần lượt là các trung điểm nha , mình ghi thiếu nha !