Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Quỳnh Nga
Xem chi tiết
Nguyễn Thủy Nhi
Xem chi tiết
Nhỏ Ma Kết
12 tháng 5 2016 lúc 10:24

Mình ko chắc nhen

Xét mẫu:

2999/1 + 2998/2 + 2997/3 + ... + 1/2999

2999 + 2998/2 + 2997/3 + ... + 1/2999

( 1 + 2998/2 ) + ( 1 + 2997/3 ) + ... + ( 1 + 1/2999 ) + 1  [Giải thích nek:chia số tự nhiên 2999 thành 2999 số 1 rồi gộp vào các phân số]

3000/2 + 3000/3 + ... + 3000/2999 + 3000/3000

3000 . ( 1/2 + 1/3 + ... + 1/2999 + 1/3000 )

Giờ thì phần tử và phần trong ngoặc của mẫu đã giống nhau nên loại bỏ

=>N=1/3000

Nhỏ Ma Kết
12 tháng 5 2016 lúc 10:25

1 lần nữa là mình ko chắc nhen

phạm văn quân
2 tháng 3 2020 lúc 11:13

Anh nhỏ ma kết ơi cho em hỏi vậy còn số một cuối cùng đâu ạ

Khách vãng lai đã xóa
Hà My Trần
Xem chi tiết
Trần Nguyễn Tanh Ngọc
1 tháng 4 2016 lúc 19:27

Ta có \(A=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+...+\frac{1}{2999}}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+1+...+1\right)+\frac{2998}{2}+...+\frac{1}{2999}}\)

              \(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+\frac{2998}{2}\right)+\left(1+\frac{2997}{3}\right)+...+\left(1+\frac{1}{2999}\right)+\frac{3000}{3000}}\)

              \(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{3000}}\)

               = \(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)

Vậy A= \(\frac{1}{3000}\)

Hà My Trần
1 tháng 4 2016 lúc 18:56

Ai đó giúp tui đi , sáng mai kiểm tra ròi :'( 

Hà My Trần
Xem chi tiết
Bố của bạn
Xem chi tiết
phạm văn quân
Xem chi tiết
☆MĭηɦღAηɦ❄
2 tháng 3 2020 lúc 10:59

Đề là 1/3000 nhé ~

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\left(\frac{2998}{2}+1\right)+\left(\frac{2997}{3}+1\right)+...+\left(\frac{1}{2999}+1\right)+1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{\frac{3000}{2}+\frac{3000}{3}+....+\frac{3000}{2999}+\frac{3000}{3000}}\)

\(=\frac{1}{3000}\)

Khách vãng lai đã xóa
Lê Phương Nga
2 tháng 3 2020 lúc 11:02

Đề bài bn ?

Khách vãng lai đã xóa
Tran Hoa Tham
Xem chi tiết
Nguyễn Thanh Hương
Xem chi tiết
ST
11 tháng 3 2017 lúc 15:52

Câu 1:

B = \(\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}\)

\(\frac{3000-1}{1}+\frac{3000-2}{2}+\frac{3000-3}{3}+...+\frac{3000-2999}{2999}\)

\(\left(\frac{3000}{1}+\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{2999}\right)-\left(\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{2999}{2999}\right)\)

\(3000+3000.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)-2999\)

\(3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)+\frac{3000}{3000}\)

\(3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)

Nguyễn Thanh Hương
11 tháng 3 2017 lúc 19:47

các bn ơi 

giúp mk đi mà

+.+

Lê Huy Dương
15 tháng 3 2019 lúc 22:37

C=2013/1*2014/2*2015/3*...*3012/1000

C=2013*2014*2015*...*3012/1*2*3*...*1000

D=1001/1*1002/2*1003/3*...*3012/2012

D=1001*1002*...*3012/1*2*...*2012

Suy ra C/D=2013*2014*2015*...3012*1*2*...*2012/1*2*3*...*1000*1001*1002*...*3012

( Nhân đảo ngược)

Vậy C/D=1

Hà Vĩnh Phong
Xem chi tiết
NO NAME
21 tháng 4 2016 lúc 22:24

=(3000-3)+(3000-2)+(3000-1)

=(3000+3000+3000)-(3+2+1)

=9000-6

=8994

NO NAME
21 tháng 4 2016 lúc 22:24

k cho mình nha

Doan Binh Phuc An
22 tháng 4 2016 lúc 17:33

2997 + 2998 + 2999 = 8994