Tìm x để biểu thức sau là số nguyên 8-3x/x+3
tìm x là số nguyên để biểu thức sau là số nguên
\(\frac{8-3x}{x+3}\)
\(\frac{8-3x}{x+3}\in Z\Leftrightarrow8-3x⋮x+3\Leftrightarrow8-3x+3x+9⋮x+3\Leftrightarrow17⋮x+3\Leftrightarrow x+3\in\left\{-1;1;-17;17\right\}\)
\(\Leftrightarrow x\in\left\{-4;-2;-20;14\right\}\)
\(\frac{8-3x}{x+3}=\frac{-3x-9+17}{x+3}=\frac{-3\left(x+3\right)+17}{x+3}=-3+\frac{17}{x+3}\)
Để biểu thức nguyên thì \(\frac{17}{x+3}\)nguyên
\(\Rightarrow17⋮x+3\) \(\Rightarrow x+3\varepsilonƯ\left(17\right)=\hept{ }-1;1;-17;17\)
Vậy x = \(-4;-2-20;14\)
\(\frac{8-3x}{x+3}=\frac{-3x+8}{x+3}=\frac{-3x-9+17}{x+3}=-3+\frac{17}{x+3}\)
Để biểu thức nguyên thì \(x+3\inƯ\left(17\right)=\left(-17;-1;1;17\right)\)
+ \(x+3=-17\Rightarrow x=-20\)
+ \(x+3=-1\Rightarrow x=-4\)
+ \(x+3=1\Rightarrow x=-2\)
+ \(x+3=17\Rightarrow x=14\)
Tách phần nguyên của biểu thức sau, rồi tìm giá trị nguyên của x để giá trị của biểu thức cũng là 1 số nguyên:
\(\dfrac{4x^3-3x^2+2x-83}{x-3}\)
Tìm x nguyên để giá trị của mỗi biểu thức sau là số nguyên:
E = (3x2 - x + 3) : (3x + 2)
E=(3x2-x+3):(3x+2)=(x-1)+\(\frac{5}{3x+2}\)
\(E\varepsilon Z\Leftrightarrow5⋮\left(3x+2\right)\)\(\Leftrightarrow3x+2=Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)
*\(3x+2=-5\Leftrightarrow x=\frac{-7}{3}\)
*\(3x+2=-1\Leftrightarrow x=-1\)
*\(3x+2=1\Leftrightarrow x=\frac{-1}{3}\)
*\(3x+2=5\Leftrightarrow x=1\)
\(E=\frac{3x^2-x+3}{3x+2}=\frac{3x^2+2x-3x-2+5}{3x+2}=\frac{x\left(3x+2\right)-\left(3x+2\right)+5}{3x+2}\)
\(=\frac{\left(x-1\right)\left(3x+2\right)+5}{3x+2}=x-1+\frac{5}{3x+2}\)
E nguyên khi x nguyên và \(\frac{5}{3x+2}\) nguyên => 5 chia hết cho 3x+2
<=>\(3x+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Leftrightarrow3x\in\left\{-7;-3;-1;3\right\}\)
<=>\(x\in\left\{-\frac{7}{3};-1;-\frac{1}{3};1\right\}\)
vì x nguyên nên x=-1 hoặc x=1
cái này chẳng cần phải tách , nhóm hạn từ như Trà My chỉ cần chia hai đa thức cùng biến đã sắp xếp
Tìm x thuộc Zd để biểu thức sau là số nguyên.
x+7/3x-1
A = \(\dfrac{x+7}{3x-1}\)
A \(\in\) Z ⇔ \(x+7\) \(⋮\) 3\(x-1\)
⇔ 3 \(\times\)( \(x+7\)) \(⋮\) 3\(x\) - 1
⇔ 3\(x\) + 21 ⋮ 3\(x-1\)
⇔ 3\(x-1\) + 22 ⋮ 3\(x\) - 1
⇔ 22 ⋮ 3\(x\) - 1
⇔ 3\(x\) - 1 \(\in\) { -22; -11; -2; -1; 1; 2; 11; 22}
⇔ \(x\) \(\in\) { -7; -10/3; -1/3; 0; 2/3; 1; 4; 23/3}
Vì \(x\) \(\in\) Z nên \(x\) { -7; 0; 1; 4}
Tìm số nguyên x để biểu thức sau là số nguyên:
\(\frac{2x-3}{3x-2}\)
Để : \(\frac{2x-3}{3x-2}\) nguyên
Thì 2x - 3 chia hết cho 3x - 2
=> 3(2x - 3) chia hết cho 3x - 2
=> 6x - 9 chia hết cho 3x - 2
=> 6x - 4 - 5 chia hết cho 3x - 2
=> 2(3x - 2) - 5 chia hết cho 3x - 2
=> 5 chia hết cho 3x - 2
=> 3x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
3x - 2 | -5 | -1 | 1 | 5 |
3x | -3 | 1 | 3 | 7 |
x | -1 | 1 |
Vậy x = -1;1
em ngoan sẵn rồi anh cứ phải nói
anh cũng ngử ngoan đi love you
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
tìm x nguyên để biểu thức sau có giá trị nguyên: 3x+8/x-1
\(\frac{3x+8}{x-1}=\frac{3x-3+11}{x-1}=3+\frac{11}{x-1}\inℤ\Leftrightarrow\frac{11}{x-1}\inℤ\)
mà \(x\)là số nguyên nên \(x-1\inƯ\left(11\right)=\left\{-11,-1,1,11\right\}\)
\(\Leftrightarrow x\in\left\{-10,0,2,12\right\}\).
\(\frac{3x+8}{x-1}\)=3+\(\frac{11}{x-1}\)
Điều kiện xác định: x\(\ne\)1
Để \(\frac{3x+8}{x-1}\)nguyên thì 3+\(\frac{11}{x-1}\)cũng phải nguyên
=> \(\frac{11}{x-1}\) nguyên => x-1 chia hết cho 11
=> x-1 thuộc ước của 11 \(\Rightarrow\)x-1 thuộc {1;11}
x-1=11\(\Rightarrow\)x=12 (thỏa mãn đk)
x-1=1 \(\Rightarrow\)x=2 (thỏa mãn đk)
Vậy x=2;12 thì \(\frac{3x+8}{x-1}\)nguyên
Tìm x để biểu thức x^2- 3x+ 7/x- 3 là số nguyên
\(\frac{x^2-3x+7}{x-3}=\frac{x\left(x-3\right)+7}{x-3}=x+\frac{7}{x-3}\)
biểu thức nguyên khi \(\frac{7}{x-3}\) nguyên <=> x-3 \(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
<=>\(x\in\left\{-4;2;4;10\right\}\)
Tìm số nguyên x để biểu thức sau là số nguyên: A=\(\frac{3x-2}{x+3}\)
ta co de A la so nguyen thi
3x - 2 chia het cho x+3
ta co:
3x -2
=x+3+x+3+x+3-11
ma x+3 chia het cho x+3
nen de A nguyen thi -11 chia het cho x+3
ta co:
x+3=-11
x =-14