1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+2017)(x+2018)
Tìm x,biết:
x+2015/5 + x+2014/6 = x+2017/3 + x+2018/2
Hướng dẫn: x+2015/5+1 + x+2014/6+1 = x+2017/3+1 + x+2018/2+1
=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2
=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)
Với x+2020=0=>x=-2020
Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí
Vậy x=-2020
{1-1/2}x{1-1/3}x{1-1/4}x{1-1/5}x......x{1-1/2017}x{1-1/2018}
=\(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}....\dfrac{2016}{2017}.\dfrac{2017}{2018}\)
\(\dfrac{1.2.3.4....2017}{2.3.4....2017.2018}\)
=\(\dfrac{1}{2018}\)
A=(1-1/2)x(1-1/3)x(1-1/4)x...(1-1/2017)x(1-1/2018)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2017}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2016}{2017}\)
\(A=\frac{1}{2017}\)
\(\frac{1-1}{2}.\frac{1-1}{3}.\frac{1-1}{4}......\frac{1-1}{2017}.\frac{1-1}{2018}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}........\frac{2016}{2017}.\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
Nguyễn Phương Uyên hình như bạn lộn đề thì phải ? đề là 2018 mà bn lại ghi 2017 !!??
2/3 x 2018/2017 -2/3 x 1/2017 + 1/3
\(\frac{4036}{6051}-\frac{2}{6051}+\frac{1}{3}\)
\(=1\)
\(\frac{2}{3}\times\frac{2018}{2017}-\frac{2}{3}\times\frac{1}{2017}+\frac{1}{3}\)
\(\frac{4036}{6051}-\frac{2}{6051}+\frac{1}{3}\)
\(=1\)
Code : Breacker
\(\frac{2}{3}.\frac{2018}{2017}-\frac{2}{3}.\frac{1}{2017}+\frac{1}{3}\\= \frac{2}{3}.\left(\frac{2018}{2017}-\frac{1}{2017}+\frac{1}{3}\right)\\= \frac{2}{3}.\left(1+\frac{1}{3}\right)\\ =\frac{2}{3}.\frac{4}{3}\\ =\frac{8}{9}\)
tìm x biết: x+1/2019+x+2/2018+x+3/2017=x-1/2021+x-2/2022+x-3/2023
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
Vì \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)
=> x + 2020 = 0
=> x = -2020
Bài làm :
Ta có :
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
\(\text{Vì : }\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy x=-2020
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\frac{x+1+2019}{2019}+\frac{x+2+2018}{2018}+\frac{x+3+2017}{2017}=\frac{x-1+2021}{2021}+\frac{x-2+2022}{2022}+\frac{x-3+2023}{2023}\)\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
|3x-2018| + |x-2017| = |2x -1|
|x-1| + |x-3| +|x-5| +|x-7| = 8
|x-2018| + |x-2017| + |x-2018| = 2
MOi nguoi giup minh voi 4gio minh can roi
\(\left|3x-2018\right|+\left|x-2017\right|=\left|2x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-2018+x-2017=2x-1\\-\left(3x-2018\right)+\left[-\left(x-2017\right)\right]=2x-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x-4035=2x-1\\\left(-3x-x\right)+\left(2018+2017\right)=2x-1\end{cases}}\)
Làm tiếp
TH2:
\(\left|3x-2018\right|+\left|x-2017\right|=\left|2x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-2018+x-2017=-2x+1\\-\left(3x-2018\right)+\left[-\left(x-2017\right)\right]=-2x+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x-4035=-2x+1\\\left(-3x-x\right)+\left(2018+2017\right)=-2x+1\end{cases}}\)
Tự tiếp tiếp nha bạn
Bài sau cũng tg tự vậy mà làm
mik chưa dc học dạng này sr
tìm x . 0.05*((2x-2)/2016 +2x/2017+(2x+2)/2018)=3.3-((x-1)/2016+x/2017+(x+1)/2018)
Tìm x biết :
[1/2 + 1/3 + .......+ 1/2019]x = 2018/1 + 2017/2 + .......+ 1/2018