cho n là số tự nhiên lẻ chứng minh 1/1.3+1/3.5+1/5.7+...+1/n(n+2)<1/2
Tìm số tự nhiên n để : 1/1.3+1/3.5+1/5.7+...+1/n.(n+2)<2003/2004
GIÚP MIK VỚI MIK ĐANG CẦN GẤP
\(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)<2003/2004\)
Ta có :=2/2.(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)
=1/2.(2/1.3+2/3.5+2/5.7+...+2/n.(n+2)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/n-1/n+2)
=1/2.(1-1/n+2)
=1/2.(n+2/n+2-1/n+2)
=1/2.(n+2-1/n+2)
=1/2.n+1/n+2
=n+1/(n+2).2
Vì: n+1/(n+2).2<2003/2004
Suy ra:n+1/(n+2).2=x/2004
Suy ra:(n+2).2=2004
n+2 =1002
n =1000
Vậy n bằng 1000
chứng minh rằng A=1/1.3+1/3.5+1/5.7+...+1/(2n+1).(2n+3) là phân số tối giản với mọi n thuộc N
nếu bn lm dc tặng 3 tick
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)
= \(1-\frac{1}{\left(2n+3\right)}\)
cách làm này ko biết sai hay đúng nên hãy cẩn thận
Các bạn giúp mìn bài nì ha. Bạn nào giải được trong vòng 5 phút thì mìn thanks lém lém:
Tính A= 1.3^3+3.5^3+5.7^3+...+n.(n+2)^3(với n là số tự nhiên lẻ)
Chứng minh rằng với mọi n ∈ N✱ , ta có :
1/1.3+1/3.5+1/5.7+...+1/(2n-1)(2n+1)=n/2n+1
1, (x-3)(x-5)<0
2, 2/1.3+2/3.5+2/5.7+...+2/99.101
3, 5/1.3+5/3.5+5/5.7+...+5/99.101
4, Chứng tỏ rằng phân số 2n+1/3n+2 là phân số tối giản
5, cho A=n+2/n-5(n thuộc Z;n khác 5) Tìm xđể A thuộc Z
mình làm câu 4 nha
Gọi d là ước chung của 2n+1 và 3n+2 (d thuộc N*)
=>(2n+1) : d và (3n+2) : d
=>3.(2n+1) :d và 2.(3n+2): d
=>(6n+3) :d và (6n+4) : d
=> ((6n+4) - (6n+3)) : d
=>1 :d => d=1
Vì d là ước chung của 2n+1/3n+2
mà d =1 => ƯC(2n+1/3n+2) =1
Vậy 2n+1/3n+2 là phân số tối giản
Tick mình nha bạn hiền .
Chứng minh với mọi số tự nhiên \(n\ge2\) :
\(M=\left(1-\dfrac{3}{2.4}\right).\left(1-\dfrac{3}{3.5}\right).\left(1-\dfrac{3}{4.6}\right).\left(1-\dfrac{3}{5.7}\right)...\left(1-\dfrac{3}{n\left(n+2\right)}\right)>\dfrac{1}{4}\)
\(1-\dfrac{3}{n\left(n+2\right)}=\dfrac{n\left(n+2\right)-3}{n\left(n+2\right)}=\dfrac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(\Rightarrow M=\dfrac{1.5}{2.4}.\dfrac{2.6}{3.5}.\dfrac{3.7}{4.6}...\dfrac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(=\dfrac{1.2.3...\left(n-1\right)}{2.3.4...n}.\dfrac{5.6.7...\left(n+3\right)}{4.5.6...\left(n+2\right)}\)
\(=\dfrac{1}{n}.\dfrac{n+3}{4}=\dfrac{n+3}{4n}=\dfrac{1}{4}+\dfrac{3}{4n}>\dfrac{1}{4}\) (đpcm)
Số tự nhiên x thỏa mãn là 1/(1.3)+1/(3.5)+1/(5.7)+.....+1/x(x+2) = 16/34
= 15 nha minh cung dang thi day vong 10 cau 8 bai thi 3 chu gi
Tìm số tự nhiên x thỏa mãn 1/1.3 + 1/3.5 + 1/5.7 + ...+ 1/x(x + 2) = 8/17
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{X\left(X+2\right)}\)
\(\frac{1}{2}.\left(\frac{1}{1.3}+...+\frac{1}{X\left(X+2\right)}\right)\)= \(\frac{16}{34}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{X}-\frac{1}{X+2}\right)\)
=15
TA CÓ : 1/1.3 + 1/3.5 + 1/5.7 +... + 1/X(X+2) = 8/17
=> 2/1.3 + 2/3.5 + 2/5.7 +... + 2/X(X+2) = 8/17 . 2 = 16/17
<=> 1 - 1/X+2 = 16/17
X+2/X+2 - 1/X+2 = 16/17
X+2 -1/X+2 = 16/17
=> X+2 -1 =16 VÀ X+2 = 17
=> X = 15
1/1.3+1/3.5+1/5.7+....+1/n(n+2)=20/41
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{n\left(n+2\right)}=\frac{20}{41}\)
\(\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{n\left(n+2\right)}\right)\cdot2=\frac{20}{41}\cdot2\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{n\left(n+2\right)}=\frac{40}{41}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{40}{41}\)
\(1-\frac{1}{n+2}=\frac{40}{41}\)
\(\frac{1}{n+2}=1-\frac{40}{41}\)
\(\frac{1}{n+2}=\frac{1}{41}\)
\(\Rightarrow n+2=41\)
\(n=41-2\)
\(n=39\)