cho a + 5b chia hết cho 7 ( a , b thuộc N )
cm 10 . a + b chia hết cho 7
cho a+5b chia hết cho 7 (a,b thuộc N).CMR:10a+b chia hết cho 7
\(49a+a+5b⋮7\)vì \(49a⋮7\)cộng với \(a+5b⋮7\)thì ta được \(49a+a+5b⋮7\)nha :)
\(a+5b⋮7\)
\(\Rightarrow49a+a+5b⋮7\)
\(\Rightarrow50a+5b⋮7\)
\(\Rightarrow5\left(10a+b\right)⋮7\)
Mà 5 không chia hết cho 7 => (10a+b) chia hết cho 7 (ĐPCM)
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Cho (a+5b) chia hết cho 7, (a,b) thuộc N*. Chứng minh rằng (10a+b)chia hết cho 7.
Giả sử (10a + b)⋮7 (1)
Vì (a + 5b)⋮7 nên 4(a + 5b)⋮7
=> (4a + 20b)⋮7 (2)
Từ (1) và (2) => (10a + b) + (4a + 20b)⋮7
=> (10a + b + 4a + 20b)⋮7
=> (10a + 4a) + (b + 20b)⋮7
=> (14a + 21b)⋮7
=> 7(2a + 3b)⋮7 (đúng)
=> Điều giả sử là đúng
Vậy (10a + b)⋮7 (đpcm)
Theo đầu bài (a+5b) \(⋮\)7 (a, b \(\in\) N*)
=> a \(⋮\)7, 5b \(⋮\)7
Mà 5 \(⋮̸\) 7 nên b \(⋮\)7
Do a \(⋮\)7 nên 10a \(⋮\)7
=> 10a + b \(⋮\)7
Vậy 10a + b \(⋮\)7
Cho 10a+b chia hết cho 7 (a,b thuộc N ). Chứng tỏ rằng a+5b chia hết cho 7
Ta có
10a+b=(10a+b+49b)-49b (a,b thuộc N)
Vì 10a+b chia hết cho 7
49b chia hết cho 7
=>10a+b+49b chia hết cho 7
10a+b+49b=10a+50b=10(a+5b)
Vì 10a+b+49b chia hết cho 7
10 không chia hết cho 7
=> a+5b chia hết cho 7(đpcm)
Vậy 10a+b chia hết cho 7 (a,b thuộc N ) thì a+5b chia hết cho 7
Xét tổng:
(10a+b)+4(a+5b)
=(10a+b)+4a+20b
=14a+21b
=7(2a+3b)\(⋮\)7(với mọi a,b\(\in N\)
Vì7(2a+3b)\(⋮\)7\(\Rightarrow\)(10a+b)+4(a+5b)\(⋮\)7
Ta có 10a+7\(⋮7\Rightarrow4\left(a+5b\right)⋮7\)Ma (4,7)=1
\(\Rightarrow a+5b⋮7\)
Ta có: 10a+b=10(a+5b)-49b
Vì a+5b chia hết cho 7
Suy ra : 10*a+5b) chia hết cho 7 và 49b cũng sẽ chia hết cho 7
Nên : 10(a+5b)-49b chia hết cho 7
=>10a+b chia hết cho 7
Ngược lại, vì 10a+b và 49b chia hết cho 7
=>10(a+5b) chia hết cho 7
Mà 10 khong chia hết cho 7 => a+5b chia hết cho 7
Cho a+5b chia hết cho 7 (a,b thuộc N). Chứng minh rằng 10a+b chia hết cho 7
trong sách nâng cao và phát triển ý, cứ tìm sẽ ra
Cho a+5b chia hết cho 7(a,b thuộc N).Chứng minh rằng 10a+b chia hết cho 7
ta có:
a+5b chia hết cho 7
=>10.(a+5b)=10a+50b chia hết cho 7
lại có: 49b chia hết cho 7
=>10a+50b-49b chia hết cho 7
=>10a+b chia hết cho 7 (đpcm)
biết a+5b chia hết cho 7(a,b thuộc N). CMR: 10a+b chia hết cho 7
a+5b chia hết cho 7
=>10.(a+5b)chia hết cho 7
=>10a+50b chia hết cho 7
mà 49b chia hết cho 7
=>10a+50b-49b chia hết cho 7
=>10a+b chia hết cho 7(đpcm)
Ta có:
10(a + 5b) - (10a + b)
= 10a + 50b - 10a - b
= (10a - 10a) + (50b - b)
= 49b chia hết cho 7.
Mà a + 5b chia hết cho 7 => 10(a + 5b) chia hết cho 7.
Từ 2 điều trên => 10a + b chia hết cho 7 (ĐPCM)
cmr nếu a,b thuộc N và a+5b chia hết cho 7 thì 10a+b chia hết cho 7
Cho a + 5b chia hết cho 7 (a, b thuộc N) . CMR10a + b chia hết cho 7, điều ngược lại có đúng không