tìm số tự nhiên nhỏ nhất có 3 chữ số sao cho chia nó cho11,13 thì dư lần lượt là 5,8.
1) Tìm số tự nhiên n nhỏ nhất sao cho khi chia n cho 3, 5, 7 thì được số dư lần lượt là 2, 3, 4?
2) Tìm số tự nhiên lớn nhất có 3 chữ số sao cho khi chia n cho 8 dư 7, chia n cho 31 dư 28?
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3; 5; 7). Do 3; 5 và 7 là các số nguyên tố cùng nhau nên BCNN(3; 5; 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8; 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8; 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
1.Tìm số tự nhiên lớn nhất có 3 chữ số , sao cho chia nó cho 2 , cho 3 , cho 4 , cho 5 , cho 6 ta được các số dư lần lượt là 1 , 2, 3 , 4, 5, 6
2.Tìm số tự nhiên nhỏ nhất chia cho 8 dư 6 , chia cho 12 dư 10 , chia cho 15 dư và chia hết cho 13
goi tư nhien a nho nhat la x(x thuoc N)
x:8 du 6 x+2 chia het 8
x:12du10 suy ra x+2 chia het 12
x:15du13 x+2chia het 15
suy ra x+2 chia het (8,12,15)
tu day cac ban tu lam nhe minh viet moi tay roi
Tìm số tự nhiên nhỏ nhất sao cho chia nó cho 5,7,9 lần lượt có số dư là 3,4,5
1 , Tìm số tự nhiên nhỏ nhất , biết rằng : số đó chia cho 8 dư 6 , chia cho 12 dư 10 , chia cho 15 dư 13 và chia hết cho 23.
2 , Tìm số tự nhiên lớn nhất có 3 chữ số , sao cho chia nó cho 2 ;3 ;4 ; 5 ; 6 ta được dư lần lượt là 1 ; 2; 3; 4 ; 5 .
tìm số tự nhiên nhỏ nhất biết nó chia cho 5;7;9 thì có số dư lần lượt là 3;4;5
tìm số tự nhiên lớn nhất có 3 chữ số sao cho chia nó cho 2;3;4;5;6.Ta được số dư lần lượt là 1;2;3;4;5
Chia hết cho 2;3;4;5;6 thì chia hết cho tích 2*3*4*5*6=720
B(720)={0;720;1440;...}
VÌ số đó có 3 chữ số nên chỉ có số 720 thỏa mãn
Vậy số đó bằng 720
Gọi số đó là x ( x thuộc N* , 100 _< x _< 999 )
Vì x chia 2 dư 1=> x = 2k + 1 ( k thuộc N ) => x +1 = 2k + 2 = 2( k + 1 ) chia hết cho 2
Vì x chia 3 dư 2=> x = 3q + 2 ( q thuộc N ) => x +1 = 3q + 3 = 3( q + 1 ) chia hết cho 3
Vì x chia 4 dư 3=> x = 4n + 3 ( n thuộc N ) => x +1 = 4n + 4 = 4( n + 1 ) chia hết cho 4
Vì x chia 5 dư 4=> x = 5h + 4 ( h thuộc N ) => x +1 = 5h + 5 = 5( h + 1 ) chia hết cho 5
Vì x chia 6 dư 5=> x = 6o + 5 ( o thuộc N ) => x +1 = 6o + 6 = 6( o + 1 ) chia hết cho 6
Vì x + 1 chia hết cho 2,3,4,5,6 => x + 1 thuộc B C ( 2,3,4,5,6 )
Ta có 2 = 2
3 = 3
4 = 22
5 = 5
6 = 2 .3
=> BCNN ( 2,3,4,5,6 ) = 22.3.5 = 60
=> = B ( 60 ) = { 0,60,120,180,240,300,360,480,540,600,660,720,780,840,900,960,1020,....}
Mà x Thuộc B C ( 2,3,4,5,6 ) và x là số tự nhiên có 3 chữ số lớn nhất => x = 960
Vậy x = 960
Mình thiếu bổ sung nha :
MÀ x + 1 = 960 => x = 959
Vậy x = 959
Tìm số tự nhiên nhỏ nhất biết nó chia cho 5 , 7 , 9 thì có số dư lần lượt là 3, 4, 5.
Tìm số tự nhiên nhỏ nhất sao cho khi chia nó cho 2,3,4,5,6 có cố dư lần lượt là 1,2,3,4,5
Gọi số cần tìm là a
a chia 2;3;4;5;6 dư 1;2;3;4;5
=> a = BCNN (2;3;4;5;6) - 1
2 = 2 ; 3= 3 ; 4 = 22 ; 5= 5 ; 6 = 2.3
BCNN(2;3;4;5;6) = 22 . 3 . 5 = 60
a = 60 - 1 = 59
Vậy số cần tìm bằng 59
Tìm số tự nhiên n nhỏ nhất có 10 chữ số sao cho khi chia n cho 2009; 2011 thì có số dư lần lượt là 1228; 913