cho tam giác ABC, điểm D,E theo thứ tự là trung điểm của AB,AC.Trên tia đối tia ED lấy điểm F sao cho ED=È.C/m
a, tam giác AED=tam giác CEF
b,AD//CF
cho tam gics ABC . gọi D;E theo thứ tự là trung điểm của AB , AC . Trên tia đối của tia ED lấy điểm F sao cho È=ED . chứng minh a)BD=CF; AB song song CF
b) tam giác BCD = tam giác FDC
c) DE song song BC
TL :
DE = BC . Xét BD//BF nên các cạnh đều đối diện nhau
HT
a) Xét t/g AEF và t/g CED có :
AE=CE ( E là trung điểm AC)
góc AEF = góc CED ( đối đỉnh)
EF=ED( gt)
=> t/g AEF = t/g CED ( c.g.c)
=> AF=DC ( 2 cạnh tương ứng )
b)
Xét t/g AED và t/g CEF có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, t/g AED = t/g CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong
nên CF // AD hay CF // AB hay CF//DB
Nối đoạn CD
Xét t/g BDC và t/g FCD có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, t/g BDC = t/g FCD (c.g.c)
=> BC = FD ( 2 cạnh tương ứng )
Mà DE=EF=1/2 FD
=>DE=1/2 BC ( đpcm)
Lại có : t/g BDC =t/g FCD ( cmt)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong
nên DF // BC
hay DE // BC ( E thuộc DF)( đpcm)
Cho tam giác ABC. D và E lần lượt là trung điểm AB và AC.Trên tia đối của tia ED lấy F sao cho DE = EF
a) Chứng minh : tam giác ADE = tam giác CEF
b) Chứng minh : AB // CF
Bạn tư vẽ hình
Xét \(\Delta ADE\) và \(\Delta CEF\)có:
\(\hept{\begin{cases}AE=EC\left(gt\right)\\\widehat{AED}=\widehat{CEF}\\DE=EF\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta ADE=\Delta CEF\left(c.g.c\right)\)
Do đó \(\widehat{A}=\widehat{ECF}\)(hai góc tương ứng)
Mà hai góc này ở vị trí so le trong
Do đó AB song song với CF (dấu hiệu nhận biết)
Cho tam giác ABC,D là trung điểm của cạnh AB,E là trung điểm của cạnh AC.Trên tia đối của tia ED lấy điểm F sao cho EF=ED.Chứng minh rằng:
a)CF=BD và CF//AB
b)DE//BC và BC=2.DE
hình tự vẽ nha
a) Xét tam giác AED và tam giác CEF có:
AE=EC (GT)
góc AED=góc CEF (đối đỉnh)
ED=EF (GT)
suy ra AD=CF
mà AD=BD (GT)
suy ra CF=BD
Xét tam giác ABC có: AD=DB (GT) và AE=EC (GT)
suy ra DE là đường trung bình của tam giác ABC (đ/n) suy ra DE=1/2BC (t/c)
mà DE=1/2DF (GT)
suy ra BC=DF
Xét tứ giác DBCF có: CF=DB, DF=BC (CMT)
suy ra: tứ giác DBCF là hình bình hành (dhnb) suy ra CF//AB
b) Có DE là đường trung bình của tam giác ABC (CMT) suy ra DE//BC (t/c)
Có DE=1/2BC (CMT) hay BC=2.DE
cho tam giác ABC,E và M lần lượt là trung điểm của AB,BC.trên tia đối của MA Lấy điểm D sao cho MD=MA trên tia đối của ED lấy điểm F sao cho ED=EF chứng minh:
tam giác AMC=tam giác DMB
AC sONG SONG với BD
A là trung điểm của FC
Xét tam giác AMC và tam giác DMB có:
AM =MD (gt )
BM =MC (gt )
goc MAC=goc MDB(so le trong)
=>Tam giac AMC=tam giac DMB(c.g.c)
Vì góc MAD và góc MDB là hai góc so le trong tạo bởi đường thẳng AD cắt AC và BD
=>AC //BD
Cho tam giác ABC,điểm D,R theo thứ tứ là trung điểm của AB,AC.Trên tia DE lấy điểm F sao cho DE=EF.Chứng minh rằng:
a/ Tam giác AED bằng tam giác CEF
b/ AD//CF
c/ DE= 1/2 BC
giúp mình nha: cho tam giác abc, coi d,e theo thứ tự trung điểm của ab,ac, trên tia đối của ed lấy f sao cho ef=ed
A) chứng minh ds=cf;ab=cf
B) chứng minh tam giác bcd= tam giác fdc
C) chứng ming de=bc
Vẽ hình nếu có thể
Cho tam giác ABC có AB < AC , D là trung điểm của cạnh AB , E là trung điểm của AC . Trên tia đối của tia ED lấy F sao cho E là trung điểm của DF
a) CM tam giác AED = tam giác Cf
b) Chứng minh BD = CF VÀ FC//AB
c) chứng minh tam giác BDC = tam giác FCD
d ) Chứng minh EF = 1/2 BC
a)
Xét \(\Delta AED\)và \(\Delta CEF\)
+ AE = CE(gt)
+ DE = EF(gt)
+ \(\widehat{AED}=\widehat{CEF}\)(đổi đỉnh)
\(\Delta AED=\Delta CEF\left(c.g.c\right)\)
b) Ta có CF = AD ( hai cạnh tương ứng)
Mà AD = BD => BD = CF
Ta lại có : \(\widehat{EAD}=\widehat{ECF}\)(hai góc tương ứng)
Mà hai góc này nằm ở vị trí so le trong nên FC//AB
c) \(\Delta BDC=\Delta FCD\)(c.g.c)
+ Chung CD
+ \(\widehat{BDC}=\widehat{FCD}\)(so le trong)
+ BD = CF(cmt)
d) Từ c) ta có DE = BC
Mà DE = 2.EF=BC
=> EF=1/2 BC
Cho tam giác ABC,D là trung điểm của AB,E là trung điểm của AC.Trên tia đối của tia ED,lấy điểm F sao choED=EF
A.Chứng minh tam giác AED = tam giác CEF và AB song song FC
B.Chứng minh tam giác BDC = tam giác FCD
C.Chứng minh DE song song BC và DE = 1/2 BC
LÀM ƠN GIÚP MK VỚI CẦN GẤP LÉM PLEASE~~~~~~~~~~
Cho tam giáC ABC, D;E lần lượt là trung điểm AB và AC.Trên tia đối củ tia ED lấy F sao cho DE=EF .CMR
a) BD=CF;BD//CF
b) tam giác BCD=tam giác FDC
c)DE//BC và DE=1/2 BC
d) góc BDC= góc DAF
a/ Xét tam giác ADE và tam giác CFE có:
AE=EC(E là trung điểm của AC)
Góc AED=góc CEF(đối đỉnh)
DE=EF(gt)
=> tam giác ADE=tam giác CFE(c-g-c)
=> DA=FC(cạnh tương ứng)
Mà AD=DB(D là trung điểm AB)
Vậy DB=FC
Phù mệt quá