Tìm số tự nhiên n nhỏ nhất, biết rằng khi chia n cho 3; 5; 7 được số dư lần lượt là 2; 4; 6.
tìm số tự nhiên n nhỏ nhất có ba chữ số, biết rằng n khi chia cho 5 dư 2, n chia cho 7 dư 4
n chia cho 5 dư 2 => n chia hết cho 5 - 2 = 3
n chia cho 7 dư 4 => n chia hết cho 7 - 4 = 3
Vậy n Thuộc B( 3 ) = { 0;3;6;9;...;102;...}
=> n = 102
A) tìm số tự nhiên n nhỏ nhất n khác 0 biết rằng n chia hết cho 8 và 18 Câu B tìm các bội chung nhỏ hơn 150 của 12,30 Câu C tìm số tự nhiên n , biết rằng n chia hết cho 12,14,16 và 200<n<400
1/tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia cho 4,6,8 đều dư 32/tìm số tự nhiên nhỏ nhất sao cho khi chia 11 dư 6,chia cho 4 dư 1,chia cho 19 dư 113/tìm số tự nhiên nhỏ nhất sao cho a chia 5 dư 3,a chia 7 dư 44/tìm số tự nhiên nhỏ nhất bt đc chia cho 3 cho 4 cho 5 cho 6 đều dư 2 còn chia cho 7 thì dư 3.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Tìm kiếm bài học, bài tập, mã lớp, mã khóa học...
hehe
Tìm số tự nhiên n nhỏ nhất biết rằng khi khi chia cho 2 thì dư 1;chia cho 3 thì dư 2;chia cho 4 thì dư 3;chia cho 5 thì dư 4 và chia hết cho 7
Số tự nhiên đó là \(n\)thì ta có: \(n+1\)chia hết cho cả \(2,3,4,5\).
suy ra \(n+1\in BC\left(2,3,4,5\right)\)
Có \(BCNN\left(2,3,4,5\right)=60\)suy ra \(n+1\in B\left(60\right)\).
- \(n+1=60\)\(\Leftrightarrow n=59⋮̸7\).
- \(n+1=120\Leftrightarrow n=119⋮7\).
Vậy giá trị nhỏ nhất của \(n\)là \(119\).
a) x chia 8;12;16 dư 2
=>x-2 chia hết cho 8;12;16
mà 8=2^3
12=2^2x3
16=2^4
=> BCNN(8;12;16)=2^4x3=48
=>x-2 thuộc B(48)=[48;96;144;....]
x=[50;98;146;....]
mà x nhỏ nhất có 2 chữ số =>a=50
b) ta có a chia 12 dư 11
a chia 15 dư 14
=> a+1 chia hết cho 12 và 15
=> a+1 thuộc BC(12;15)
mà 12=2^2x3
15=3x5
=>BCNN(12;15)=2^2X3X5=60
=> a+1 thuộc B(60)=[60;120;180;.....]
a=[59;119;179;....]
mà a nhỏ nhất =>a=59
c) x chia 50;38;25 dư 12
=> x-12 chia hết cho 50;38;25
mà 50=2x5^2
38=2x19
25=5^2
=>BCNN(50;38;25)=2x5^2x19=950
=>a-12 thuộc B(950)=[950;1900;2850;....]
a=[962;1912;2862;....]
mà a bé nhất =>a=962
nhớ k cho mình đấy
1 Tìm số tự nhiên n, biết n+3 chia hết cho n+1.
2 Tìm số tự nhiên n nhỏ nhất khi chia 6,7,9 được số dư theo thứ tự là 2,3,5.
1, \(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=1+\frac{2}{n+1}\)
Suy ra n+1 phải là Ư(2)={-2;-1;1;2}
\(\Rightarrow n=-3;-2;0;1\)
bài1
Tìm số tự nhiên nhỏ nhất biết số đó khi chia cho 3 dư 1,chia cho 5 dư 3,chia cho 7 dư 5
Bài 2
Tìm ước chung của hai số n+3 và 2n+5 với n là số tự nhiên
Bài 3
Số 4 có thể là ước chung của hai số n+1 và 2n+5(n là số tự nhiên)ko
Bài 4
Tìm số tự nhiên n biết rằng;
a)1+2+3+4+5+......+n=231
b)1+3+5+7+.....+(2n-1)=169
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
tìm số tự nhiên nhỏ nhất biết rằng khi nào chia cho 147,193 cho n thì có số dư cần tìm lân lượt là 17 và 11
tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 29 dư 5,còn chia 31 dư 28.vậy số cần tìm la gi.biet so do thuoc n.