rút gọn bt sau :A= \(\frac{1}{x+1}\)+\(\frac{x-1}{x}\)+\(\frac{x+2}{x^2+x}\)
Rút gọn bt \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
Cho bt sau:A=\(\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
a)Rút gọn bt A?
b)Tính giá trị của A khi x=\(\frac{1}{2}\)
\(\frac{\left(x+\frac{1}{x}\right)^4-\left(x^4+\frac{1}{x^4}\right)-2}{\left(x+\frac{1}{x}\right)^4+x^2+\frac{1}{x^2}}\cdot\frac{x^4+1999x^2+1}{2x^2}\)
a,Rút gọn bt
b,tính giá trị của bt biết \(x^2-4x+1=0\)
Cho bt
\(C=\left(\frac{x^2+x}{x^2-2x+1}\right):\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
a, Rút gọn C
b,Tìm x dể B có gt nguyên
làm a thôi nha :D
a) \(C=\left(\frac{x^2+x}{x^2-2x+1}\right):\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}-\frac{1}{-\left(x-1\right)}+\frac{2-x^2}{x\left(x+1\right)}\right]\)
\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right]\)
\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}+\frac{x+2-x^2}{x\left(x-1\right)}\right]\)
\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{\left(x-1\right)\left(x+1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)
\(C=\frac{x+1}{x^2-2x+1}.\frac{x^2-1+x+2-x^2}{x-1}\)
\(C=\frac{x+1}{\left(x^2-2x+1\right)}.\frac{1.x}{x-1}\)
\(C=\frac{\left(x+1\right)^2}{x^3-x^2-2x^2+2x+x-1}\)
\(C=\frac{x^2+2x+1}{x^3-3x^2+3x-1}\)
a)\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x+1}{x}-\frac{1}{-\left(x-1\right)}+\frac{-x^2+2}{x.\left(x-1\right)}\right]\)
\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x^2-1}{x.\left(x-1\right)}+\frac{x}{x.\left(x-1\right)}+\frac{-x^2+2}{x.\left(x-1\right)}\right]\)
\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x^2-1+x-x^2+2}{x.\left(x-1\right)}\right]\)
\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x+1}{x.\left(x-1\right)}\right]=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right].\left[\frac{x.\left(x-1\right)}{x+1}\right]=\frac{x.\left(x+1\right).x}{\left(x-1\right).\left(x+1\right)}=\frac{x^2}{x-1}\)
b)\(\text{Để B nguyên }\Rightarrow x^2⋮x-1\)
\(x^2=x^2-1+1=\left(x-1\right).\left(x+1\right)+1\)
\(\Rightarrow\text{Để }x^2⋮x-1\Rightarrow1⋮x-1\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\Rightarrow x\in\left\{2;0\right\}\)
\(M=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
a, rút gọn bt.
b,tìm GTNN của M
\(a,\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\frac{\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\left(x^4+1-x^2\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{x^2+1}\)
\(=\frac{x^2+2}{x^2+1}\)
b, biển đổi \(M=1-\frac{3}{x^2+1}\)
M bé nhất khi \(\frac{3}{x^2+1}\)lớn nhất
\(\Leftrightarrow x^2+1\)bé nhất \(\Leftrightarrow x^2=0\)
\(\Rightarrow x=0\Rightarrow\)M bé nhất =-2
1 Cho bt:\(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)
Đkxđ và rút gọn
ĐKXĐ: \(x\ge0\)
\(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\frac{2}{x-\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
Cho Bt \(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}\)\(-\frac{3x+1-x^2}{3x}\)
a,Tìm điều kiện xác định và rút gọn bt A
b,Tính giá trị bt A tại x=4
c,tìm x thuộc Z để a thuộc Z
a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(A=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{2\cdot3x}{3x\left(x+1\right)}-\frac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\frac{x+1}{2\cdot\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{\left(-8x^2+2\right)\left(x+1\right)}{3x\left(x+1\right)2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-4x^2\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-2x\right)\left(1-2x\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{1+2x}{3x}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2x+1-3x-1+x^2}{3x}\)
\(A=\frac{x^2-x}{3x}\)
\(A=\frac{x\left(x-1\right)}{3x}\)
\(A=\frac{x-1}{3}\)
b) Thay x = 4 ta có :
\(A=\frac{4-1}{3}=\frac{3}{3}=1\)
c) Để A thuộc Z thì \(x-1⋮3\)
\(\Rightarrow x-1\in B\left(3\right)=\left\{0;3;6;...\right\}\)
\(\Rightarrow x\in\left\{1;4;7;...\right\}\)
Vậy.....
Cho Bt
a,Tìm điều kiện xác định và rút gọn bt A
b,Tính giá trị bt A tại x=4
c,tìm x thuộc Z để a thuộc Z
cho bt A=
1.rút gọn A
2. Tìm x để a>2
\(\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)
1/ ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)
\(A=\left[\frac{x}{\sqrt{x}\left(x-4\right)}-\frac{6}{3\left(\sqrt{x}-2\right)}+\frac{1}{\sqrt{x}-2}\right]:\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(=\left[\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}-2}\right]:\left(\frac{6}{\sqrt{x}+2}\right)\)
\(=\frac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\frac{\left(\sqrt{x}+2\right)}{6}\)
\(=\frac{-2}{\sqrt{x}-2}.\frac{1}{6}=-\frac{1}{3\left(\sqrt{x}-2\right)}\)
2/ Để \(A>2\Rightarrow\frac{-1}{3\left(\sqrt{x}-2\right)}>2\)\(\Rightarrow6\sqrt{x}-12+1>0\Rightarrow6\sqrt{x}-11>0\Rightarrow\sqrt{x}>\frac{11}{6}\)
\(\Rightarrow x>\frac{121}{36}\)
bạn nào bt thì giải giúp mình bài này vs : rút gọn P= \(\frac{3x^2+9x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{1-x}\)
\(=\frac{3x^2+9x-3}{x^2+x-2}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)
\(=\frac{3x^2+9x-3}{\left(x+2\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
\(=\frac{3x^2+9x-3-\left(x^2-1\right)-\left(x^2-4\right)}{\left(x-1\right)\left(x+2\right)}\)
\(=\frac{3x^2+9x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)
\(=\frac{x^2+9x+2}{\left(x-1\right)\left(x+2\right)}\)