Cộng các pthuc
1/x(x-y)(x-z) + 1/y(y-z)(y-x) + 1/z(z-x)(z-y)
M.n chịu khó đọc nhé cả viết phân số ở olm máy mình bị lỗi
Cộng các phân thức
a ) 1/( x-y)(y-z) + 1/ ( y-z)(z-x) + 1/ (z-x)(x-y) b ) 4/(y-x)(z-x) + 3/(y-x)(y-z)+ 3/(y-x)(x-z)
a ) \(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
= \(\frac{z-x}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{x-y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
= \(\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)
b ) \(\frac{4}{\left(y-x\right)\left(z-x\right)}+\frac{3}{\left(y-x\right)\left(y-z\right)}+\frac{3}{\left(y-z\right)\left(x-z\right)}\)
= \(\frac{-4}{\left(y-x\right)\left(x-z\right)}+\frac{3}{\left(y-x\right)\left(y-z\right)}+\frac{3}{\left(y-z\right)\left(x-z\right)}\)
= \(\frac{-4\left(y-z\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}+\frac{3\left(x-z\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}+\frac{3\left(y-x\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}\)
= \(\frac{-4y+4z+3x-3z+3y-3x}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}=\frac{z-y}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}\)
= \(\frac{-\left(y-x\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}=\frac{-1}{\left(x-z\right)\left(y-z\right)}=\frac{1}{\left(x-z\right)\left(x-y\right)}\)
Chúc bạn học tốt !!!
Tìm x,y,z biết (y+x+1)/x = (x+z+2)/y = (x+z-3)/z = 1/(x+z+y)
Mình tìm được (x+y+1)/x = (x+z+2)/y = (z+y-3)/z = 1/(z+x+y) =6
và x+z+y=1/6
Các bn giúp mình nốt nhé!
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
mik đồng ý với cánh diều tuổi thơ mà câu này cực kì đơn giản.
tick cho mik nhé.
giúp mình với mình hứa sẽ tick
tìm x,y,z biết x/5=y/7=z/3 và x^2+y^2-z^2=585
thông cảm nhé mình ko biết viết phân số và lũy thừa trên máy tính
Ta có : \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)
\(\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\left(\frac{z}{3}\right)^2=\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}\)\(=\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
\(\Rightarrow x=9.5=45\)
\(y=9.7=63\)
\(z=9.3=27\)
Cho các số thực x,y,z thỏa mãn x+y+z=1 và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
(x # -y ; y #-z ; z # -x)
GT cùa BT \(\frac{x^2}{y+x}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)là...
Các bạn giúp mình nhé mình đang cần gấp lắm.. Thanks!!! (Đáp án cũng dc)
cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html
tìm các số x, y, z biết x+y+z+11=\(2\sqrt{x}+4\sqrt{y-1}+6\sqrt{z-6}\)
M.n giúp mình với! Mình cảm ơn nhiều!!!
Cộng các phân thức đại số :
\(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
\(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=0\)
Đay là 1 bài violympic lớp 7: Cho tỉ lệ thức: \(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}\). Khi đó \(x+y=kz\). Vậy k=?
Cách 1: vì \(x+y=kz\) nên \(\frac{kz}{z}=\frac{y+z}{x}=\frac{x+z}{y}=k\)\(\Rightarrow\frac{y+z-x-z}{x-y}=k\Rightarrow\frac{y-x}{x-y}=z\Rightarrow k=-1\)
Cách 2: \(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{2\left(x+y+z\right)}{x+y+z}=2\Rightarrow x+y=2z\Rightarrow k=2\)
Mình thấy 2 cách đều đúng mà trong violympic chỉ có 1 ô nên mình ko biết chọn phương án nào. Các bạn giúp mình chỉ ra lỗi sai của 1 cách nhé. Mình xin cảm ơn
à nhầm ở dòng 3 cáii\(\frac{y-x}{x-y}=k\) chứ ko phải như trên đâu nha
<=>\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{z+x+y}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)
<=>\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{z+x+y}=\frac{2.\left(x+y+z\right)}{x+y+z}2\)
=>\(\frac{x+y}{z}=2=>x+y=2z\)
Mà \(x+y=kz=>k=2\)
vậy k=2
Tìm x,y,z biết
x/y+z+1 = y/x+z+1= z/x+y-2=x+y+z
Giải từng bước hộ mình nhé
Cộng các phân thức :
a) \(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b) \(\dfrac{4}{\left(y-x\right)\left(z-x\right)}+\dfrac{3}{\left(y-x\right)\left(y-z\right)}+\dfrac{3}{\left(y-z\right)\left(x-z\right)}\)
c) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)