Chứng minh tích 3 số chẵn liên tiếp luôn chia hết cho 24
Chứng minh tích 3 số chẵn liên tiếp luôn luôn chia hết cho 24
Chứng minh rằng :
a. Trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 3.
b. Trong 4 số tự nhiên liên tiếp luôn có một số chia hết cho 4.
c. Nêu kết luận tổng quát từ câu a và câu b
d. Chứng minh rằng : tích của hai số chẵn liên tiếp chia hết cho 8
Chứng minh tích của 2 số chẵn liên tiếp luôn chia hết cho 8
Hai số chẵn liên tiếp có dạng là 2k và (2k+1) với kEN
Tích của hai số này là 4k(k+1)
Ta có: k.(k+1) chia hết cho 2
Suy ra: 4k(k+1)chia hết cho 8
Vậy suy ra ĐPCM
Cố gắng lên nha bạn!
Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k thuộc Z)
Xét: 2k(2k + 2) = 4k(k + 1)
Vì 4 chia hết cho 4; k(k + 1) chia hết cho 2 (tích 2 số chẵn liên tiếp)
=> 4k(k + 1) chia hết cho 8
hay 2k(2k + 2) chia hết cho 8
Vậy: 2 số chẵn liên tiếp luôn chia hết cho 8
SDWEFRGTHBGFVDWERTGFVDX
Chứng minh rằng:
a.Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3.
b.Trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 3.
c.Trong 3 số lẻ liên tiếp luôn có 1 số chia hết cho 3.
a) Chứng minh rằng: Tích của hai số chẵn liên tiếp thì chia hết cho 8
b) Chứng minh rằng: Tích của ba số chẵn liên tiếp thì chia hết cho 48
c) Chứng minh rằng: Tích của bốn số chẵn liên tiếp thì chia hết cho 384
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
ASDWE RHTYJNHWSAVFGB
1. Chứng minh tích của 4 số tự nhiên liên tiếp chia hết cho 24
2. ________________ 5 __________________________ 5
3. ____________________________________________ 120
4. ________________ 3 số chẵn liên tiếp chia hết cho 48
Gọi tích của 3 số chẵn liên tiếp là: 2a,2a+2,2a+4. Ta thấy:
2a.(2a+2).(2a+4)=8a.(a+1).(a+2)
Nếu a là số chẵn thì a và a+2 chia hết cho 2
a là số lẻ thì a+1 chia hết cho 2
=>a.(a+1).(a+2) chia hết cho 2
Nếu a chia 3 dư 1 thì a+2 chia hết cho 3
a chia 3 dư 2 thì a+1 chia hết cho 3
=>a.(a+1).(a+2) chia hết cho 3
Từ các lập luận trên, ta được: a.(a+1).(a+2) chia hết cho 6
Vậy a.(a+1).(a+2) chia hết cho cả 8 và 6 => chia hết cho 48
Kết luận: 2a.(2a+2).(2a+4) chia hết cho 48
=> 3 số chẵn liên tiếp chia hết cho 48
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.
Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4=> số còn lại chia hết cho 2
=> Tích 4 số tự nhiên liên tiếp chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2)
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => Tích 4 số tự nhiên liên tiếp chia hết cho 3.8
=>Tích 4 số tự nhiên liên tiếp chia hết cho 24
Gọi 5 số tự nhiên liên tiếp có dạng:a,a.1,a.2,a.3,a.4
Theo đề bài ta có:a.(a.1)+(a.2)+(a.3).(a.4)
=a.5.(1.2.3.4)
=a.5.24
=a.120chia hết 120
suy ra :tích của 5 số tự nhiên liên tiếp chia hết cho 120
a, chứng minh rằng tích của 3 số chẵn liên tiếp thì chia hết cho 48
b, chứng minh rằng tích của 4 số chẵn liên tiếp thì chia hết cho 384
Chứng minh rằng : tích của hai số chẵn liên tiếp luôn chia hết cho 8
https://olm.vn/hoi-dap/question/263717.html
Một số chẵn có dạng: 2k
=> tích 2 số chắn liên tiếp là:2kx(2k+2)
=4xkxk+4xk
=4xk(k+1)chia hết cho 4
Mà kx(k+1) là tích 2 số tự nhiên liên tiếp
=>kx(k+1) chia hết cho 2
=>4xkx(k+1) chia hết cho 2x4
=>4xkx(k+1) chia hết cho 8
Vậy tích 2 số chẵn liên tiếp luôn chia hết cho 8
Chứng minh rằng
a) Tích của hai số chẵn liên tiếp luôn chia hết cho 8.
b)Tổng của hai số chẵn liên tiếp không chia hết cho 4.
c)Tổng của năm số tự nhiên liên tiếp chia hết cho 5.
tui lam cau b nhe
gọi chẵn 1 là a,chẵn 2 là b
vì a,b chẵn ,liền nhau=>a chia hết cho 4,b ko chia hết cho 4 hoặc b chia hết cho 4,a ko chia hết cho 4
=>a+b ko chia hết cho 4