CMR: 7^86 + 7^85 - 7^84 chia hết cho 55
Chứng minh rằng : \(7^{86}+7^{85}-7^{84}\) chia hết cho 55
7^86+7^85-7^84
=7^84.7^2+7^84.7-7^84.1
=7^84.(7^2+7-1)=7^84.55 chia het cho 55
Tick nhé
\(7^{86}+7^{85}-7^{84}=7^{84}.7^2+7^{84}.7+7^{84}.1\)
\(=7^{84}.\left(49+7-1\right)=7^{84}.55=7^{84}.5.11\)
Chia het cho 55
\(^{16^7-2^{24}}\)chia hết cho 15
\(^{7^{86}+7^{85}-7^{84}}\)chia hết cho 55
\(16^5+2^{15}\)chia hết cho 33
a) \(16^7-2^{24}\)
\(=268435456-16777216\)
\(=251658240\)
Mà \(251658240\)chia hết cho 15
\(\Rightarrow16^7-2^{24}\)chia hết cho 15
b) \(7^{80}+7^{85}-7^{84}\)
\(=7^{84}\left(7^2+7-1\right)\)
\(=7^{84}\left(49+7-1\right)\)
\(=7^{84}\left(56-1\right)\)
\(=7^{84}.55\)
Mà 55 luôn luôn chia hết cho 55
\(\Rightarrow7^{80}+7^{85}-7^{84}\)chia hết cho 55
c) \(16^5+2^{15}\)
\(16^5=2^{20}\)
\(\Rightarrow16^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}.2^5+2^{15}\)
\(=2^{15}\left(2^5+1\right)\)
\(=2^{15}.33\)
Mà 33 luôn luôn chia hết cho 33
\(\Rightarrow16^5+2^{15}\)chia hết cho 33
Chứng minh :
a) \(7^{86+7^{85}-7^{84}}\) chia hết cho 55
b) \(16^7-2^{24}\)chia hết cho 15
c) \(16^5+2^{15}\)chia hết cho 33
c) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
7 mũ 86 + 7 mũ 85 -7 mũ 84 chia hết cho 35
16^7-2^24
=(2^4)^7-2^24
=2^28-2^24
=2^24.2^4-2^24.1
=2^24.16-2^24.1
=2^24.(16-1)
=2^24.15 chia hết cho 15
Vậy 16^7-2^24 chia hết cho 15
CMR 7^6+7^5-7^4 chia hết cho 55
CMR 5^8+7.5^6+10^5 chia hết cho 6
CMR:7^6+7^5+7^4 chia hết cho 55
CMR : (7^6+7^5-7^4) chia hết cho 55
CMR: 7^6+7^5-7^4 chia hết cho 55 :^
76 + 75 - 74 = 74 . ( 72 + 71 - 1 ) = 74 . 55
Vì 55 chia hết cho 55
=> 74 . 55 chia hết cho 55
Vậy: 76 + 75 - 74 chia hết cho 55
Hk tốt
CMR: a) 7^6 + 7^5 - 7^4 chia hết cho 55
b) 16^5 + 2^12 chia hết cho 33