Cho 3a + 4b chia hết cho 19. Chứng minh rằng 6a + 14b chia hết cho 19
Cho 3a + 4b chia hết cho 19 và 4a + 3b chia hết cho 19 . Chứng minh rằng a và b chia hết cho 19
3a+4b=3a+[3+1]b=3a+3b+b=3[a+b]+b
vì 3[a+b] chia hết cho 19 nên b chia hết cho 19
4a+3b=a[3+1]+3b=3a+a+3b=3[a+b] +a
vì 3[a+b] chia hết cho 19 nên b chia hết cho 19
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
biết 3a+8b chia hết cho 19 ( a,b thuộc N ) chứng minh rằng 9a+5b chia hết cho 19
Giả sử 9a + 5b : 19
Khử a:
3a + 8b : 19 => 9.(3a + 8b) = 27a + 72b
9a + 5b : 19 => 3.(9a + 5b) = 27a + 15b
=> (27a + 72b) - (27a + 15b) = 27a + 72b - 27a - 15b = 57b = 19.3b : 19 (1)
Khử b:
3a + 8b : 19 => 5.(3a + 8b) = 15a + 40b
9a + 5b : 19 => 8.(9a + 5b) = 72a + 40b
=> (15a + 40b) - (72a + 40b) = 15a + 40b - 72a - 40b = 57a = 19.3b : 19 (2)
Từ (1) và (2) => 9a + 5b : 19
Chứng minh rằng :
Nếu 5a + 9b chia hết cho 13 thì 2a + b chia hết cho 13
Nếu 7a + 5b chia hết cho 19 thì 6a + 7b chia hết cho 19
a) Xét hiệu 2. (5a + 9b) - 5.(2a + b) = 10a + 18b - (10a + 5b) = (10a - 10a) + (18b - 5b) = 13b
Vì 5a + 9b chia hết cho 13 => 2(5a + 9b) chia hết cho 13
13b chia hết cho 13
=> 5.(2a + b) chia hết cho 13 (Áp dụng tính chất a ; b chia hết cho c thì a - c chia hết cho c)
mà (5; 13) = 1 nên 2a+ b chia hết cho 13
b) Xét hiệu 7.(6a + 7b) - 6(7a + 5b) = 42a + 49b - (42a + 30b) = (42a - 42a) + (49b - 30b) = 19b
=> 7.(6a + 7b) = 19b + 6(7a + 5b)
Vì 19b chia hết cho 19 và 6.(7a + 5b) chia hết cho 19 ( do 7a + 5b chia hết cho 19)
Nên 7.(6a + 7b) chia hết cho 19. ta có (7; 19) = 1 => 6a + 7b chia hết cho 19
*) Với bài tập này: Áp dụng tính chất x; y chia hết cho z thì x- y ; x + y chia hết cho z
Muốn vậy, ta nhân vào hai biểu thức đã cho số thích hợp nhằm khử a hoặc b (bài trên : khử đi a) để kết quả thu được là bội của số cần chứng minh chia hết
Quên thanks Trần Đức Thắng , mà làm câu Nếu 7a + 5b chia hết cho 19 thì 6a + 7b chia hết cho 19 luôn đi
a) Xét hiệu 2. (5a + 9b) - 5.(2a + b) = 10a + 18b - (10a + 5b) = (10a - 10a) + (18b - 5b) = 13b
Vì 5a + 9b \(⋮\) 13 => 2(5a + 9b) \(⋮\) 13
13b \(⋮\)13
=> 5.(2a + b) \(⋮\) 13 mà (5; 13) = 1 nên 2a+ b\(⋮\) 13
P/s câu b tương tự
Chứng minh rằng: 3a+2b chia hết cho 19 thì 11a+b chia hết cho 19
GIÚP MÌNH VỚI CÁC BẠN ƠI, PEALSE.
Answer:
\(3a+2b⋮19\)
\(\Rightarrow10.\left(3a+2b\right)⋮19\)
\(\Rightarrow10.\left(3a+2b\right)-19.\left(a+b\right)⋮19\)
\(\Rightarrow\left(30a+20b\right)-19a-19b⋮19\)
\(\Rightarrow11a+b⋮19\)
cho a+4b chia hết cho 7. chứng minh rằng 3a+5b chia hết cho 7.
ta có: a+4b \(⋮\)7
=> 3a +12b \(⋮\)7
=>(3a+5b)+7b \(⋮\)7
=> 3a+5b \(⋮\)7 ( vì 7b \(⋮\)7 )
vậy 3a+5b \(⋮\)7(đpcm)
k cho mình nha bạn!!!><
Cho 4a+3b chia hết cho 7
Chứng minh rằng: 3a + 4b chia hết cho 7
4a+3b=7a+7b-3a-4b=7(a+b)-(3a+4b) chia hết cho 7
+ Do 7(a+b) chia hết cho 7. Theo t/c chia hết của 1 tổng (hiệu) để 4a+3b chia hết cho 7 thì (3a+4b) cũng phải chia hết cho 7
=> 3a+4b chia hết cho 7
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
Ta có : tích của 2 và 3 thì chia hết cho 17
=> 10a = 2 x 5 x a + b chia hết cho 17
Những câu dưới bạn tự làm nha
Cm rằng 7a+5b chia hết cho 19 thì 6a+b chia hết cho 19