giải phương trình
\(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}\)= \(\frac{7}{6}\)
giải phương trình
a \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
b \(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
c \(x^2+\frac{1}{x^2}-\frac{9}{2}\left(x+\frac{1}{x}\right)+7=0\)
Hướng dẫn:
a) Đặt : \(x^2-2x+1=t\)Ta có:
\(\frac{1}{t+1}+\frac{2}{t+2}=\frac{6}{t+3}\)
b) Đặt : \(x^2+2x+1=t\)
Ta có pt: \(\frac{t}{t+1}+\frac{t+1}{t+2}=\frac{7}{6}\)
c)ĐK: x khác 0
Đặt: \(x+\frac{1}{x}=t\)
KHi đó: \(x^2+\frac{1}{x^2}=t^2-2\)
Ta có pt: \(t^2-2-\frac{9}{2}t+7=0\)
a) Đặt \(x^2-2x+3=v\)
Phương trình trở thành \(\frac{1}{v-1}+\frac{2}{v}=\frac{6}{v+1}\)
\(\Rightarrow\frac{v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}=\frac{6v\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}\)
\(\Rightarrow v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)=6v\left(v-1\right)\)
\(\Rightarrow v^2+v+2v^2-2=6v^2-6v\)
\(\Rightarrow3v^2-7v+2=0\)
Ta có \(\Delta=7^2-4.3.2=25,\sqrt{\Delta}=5\)
\(\Rightarrow\orbr{\begin{cases}v=\frac{7+5}{6}=2\\v=\frac{7-5}{6}=\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2-2x+3=2\\x^2-2x+3=\frac{1}{3}\end{cases}}\)
+) \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
+)\(x^2-2x+3=\frac{1}{3}\)
\(\Rightarrow x^2-2x+\frac{8}{3}=0\)
Ta có \(\Delta=2^2-4.\frac{8}{3}=\frac{-20}{3}< 0\)
Vậy phương trình có 1 nghiệm là x = 1
c) Đặt \(\left(x+\frac{1}{x}\right)=a\) Khi đó pt có dạng :
\(a^2-\frac{9}{2}a+7-2=0\)
\(\Leftrightarrow2a^2-9a+10=0\)
\(\Leftrightarrow2a^2-4a-5a+10=0\)
\(\Leftrightarrow\left(a-2\right)\left(2a-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2\\a=\frac{5}{2}\end{cases}}\)
+) Với \(a=\frac{5}{2}\Rightarrow x+\frac{1}{x}=\frac{5}{2}\)
\(\Rightarrow x^2+1=\frac{5x}{2}\)
\(\Rightarrow2x^2+2-5x=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\) ( thỏa mãn)
+) Với \(a=2\Rightarrow x+\frac{1}{x}=2\)
\(\Rightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\) ( thỏa mãn )
Vậy pt đã cho có tập nghiệm \(S=\left\{1,\frac{1}{2},2\right\}\)
Giải phương trình: \(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
Giải phương trình sau :
a) \(\frac{x^2-2x+1}{x^2-2x+2}+\frac{x^2-2x+2}{x^2-2x+3}=\frac{7}{6}\)
b) \(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)
Giải phương trình:
a. \(2+\frac{2x^2-8x}{2x^2+8x}+\frac{2x^2+7x+23}{2x^2+7x-4}=\frac{2x+5}{2x-1}\)
b.\(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
\(2+\frac{2x^2-8x}{2x^2+8x}+\frac{2x^2+7x+23}{2x^2+7x-4}=\frac{2x+5}{2x-1}\)
\(\Leftrightarrow2+\frac{2x\left(x-4\right)}{2x\left(x+4\right)}+\frac{2x^2+7x+23}{\left(2x-1\right)\left(x+4\right)}=\frac{2x+5}{2x-1}\)
\(\Leftrightarrow2+\frac{x-4}{x+4}+\frac{2x^2+7x+23}{\left(2x-1\right)\left(x+4\right)}-\frac{2x+5}{2x-1}=0\)
\(\Leftrightarrow\frac{2\left(x+4\right)\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{\left(x-4\right)\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{2x^2+7x+23}{\left(2x-1\right)\left(x+4\right)}-\frac{\left(2x+5\right)\left(x+4\right)}{\left(2x-1\right)\left(x+4\right)}=0\)
\(\Leftrightarrow\frac{2\left(x+4\right)\left(2x-1\right)+\left(x-4\right)\left(2x-1\right)+2x^2+7x+23-\left(2x+5\right)\left(x+4\right)}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow2\left(x+4\right)\left(2x-1\right)+\left(x-4\right)\left(2x-1\right)+2x^2+7x+23-\left(2x+5\right)\left(x+4\right)=0\)
\(\Leftrightarrow2\left(2x^2+7x-4\right)+\left(2x^2-9x+4\right)+2x^2+7x+23-\left(2x^2+13x+20\right)=0\)
\(\Leftrightarrow4x^2+14x-8+2x^2-9x+4+2x^2+7x+23-2x^2-13x-20=0\)
\(\Leftrightarrow6x^2+7x-1=0\)
\(\Leftrightarrow6\left(x^2+2.\frac{7}{12}.x+\frac{49}{144}\right)-\frac{193}{144}=0\)
\(\Leftrightarrow\left(x+\frac{7}{12}\right)^2=\frac{\frac{193}{144}}{6}=\frac{193}{864}\)
Bạn tự làm nốt.
Có chắc là đề ổn không bạn?
Hoặc là xem bài mình hộ với; ngộ nhỡ mình sai. Chứ kết quả lẻ quá; chẳng đẹp gì :>
1 giải phương trình
\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)
2 . \(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
Bài 1 :
Ta có :
\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)
\(\Rightarrow\left(\frac{x+2011}{2013}+1\right)+\left(\frac{x+2012}{2012}+1\right)=\left(\frac{x+2010}{2014}+1\right)\)
\(+\left(\frac{x+2013}{2011}+1\right)\)
\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}=\frac{x+4024}{2014}+\frac{x+4024}{2011}\)
\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}-\frac{x+4024}{2014}-\frac{x+4024}{2011}=0\)
\(\Rightarrow\left(x+4024\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2014}-\frac{1}{2011}\right)=0\)
\(\Rightarrow x+4024=0\)
\(\Rightarrow x=-4024\)
Bài 2 :
Đặt \(x^2+2x+1=a\Rightarrow a=\left(x+1\right)^2\ge0\)
=> Phương trình trở thành
\(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)
\(\Rightarrow\frac{a}{a+1}.6\left(a+1\right)\left(a+2\right)+\frac{a+1}{a+2}.6\left(a+1\right)\left(a+2\right)=\frac{7}{6}.6\left(a+1\right)\left(a+2\right)\)
\(\Rightarrow6a\left(a+2\right)+6\left(a+1\right)^2=7\left(a+1\right)\left(a+2\right)\)
\(\Rightarrow12a^2+24a+6=7a^2+21a+14\)
\(\Rightarrow5a^2+3a-8=0\)
\(\Rightarrow\left(a-1\right)\left(5a+8\right)=0\)
Vì \(a\ge0\Rightarrow a=1\)
\(\Rightarrow x^2+2x+1=1\)
\(x^2+2x=0\)
\(\Rightarrow x\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{-2,0\right\}\)
Giải Phương Trình:
\(a.\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
\(b.\frac{x^2}{x^2+2x+2}+\frac{x^2}{x^2-2x+2}-\frac{4\left(x^2-5\right)}{x^2+4}=\frac{322}{65}\)
a/ \(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
<=> \(\frac{\left(x+1\right)^2}{\left(x+1\right)^2+1}+\frac{\left(x+1\right)^2+1}{\left(x+1\right)^2+2}=\frac{7}{6}\left(1\right)\)
đặt \(\left(x+1\right)^2=a\left(a>0\right)\)
=> \(\left(1\right)\)<=> \(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)
<=> \(\frac{a\left(a+2\right)+\left(a+1\right)^2}{\left(a+1\right)\left(a+2\right)}=\frac{7}{6}\)
<=> \(\frac{2a^2+4a+1}{a^2+3a+2}=\frac{7}{6}\)
<=> \(6\left(2a^2+4a+1\right)=7\left(a^2+3a+2\right)\)
<=> \(5a^2+3a-8=0\)
<=> \(5a^2-5a+8a-8=0\)
<=> \(\left(5a+8\right)\left(a-1\right)=0\)
<=> \(a=\frac{-8}{5}\left(h\right)a=1\)
mà \(a>0\)
=> \(a=1\)
=> \(\left(x+1\right)^2=1\)
=> \(x+1=1\left(h\right)x+1=-1\)
=> \(x=0\left(h\right)x=-2\)
vậy ......
chúc bn học tốt
Xét x = 0 và x = -2 , thay vào ta được \(VT=VP\)
Xét x > 0 :
\(VT=\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=1-\frac{1}{x^2+2x+2}+1-\frac{1}{x^2+2x+3}\)
\(=2-\left(\frac{1}{x^2+2x+2}+\frac{1}{x^2+2x+3}\right)>2-\left(\frac{1}{2}+\frac{1}{3}\right)>\frac{7}{6}=VP\) ( loại )
Xét x < -2 :
\(VT=2-\left(\frac{1}{x\left(x+2\right)+2}+\frac{1}{x\left(x+2\right)+3}\right)>2-\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{7}{6}=VP\) ( loại )
Xét -2 < x < 0 :
\(VT=2-\left(\frac{1}{x^2+2x+2}+\frac{1}{x^2+2x+3}\right)>2-\left(\frac{1}{-2}+1\right)=\frac{3}{2}>\frac{7}{6}=VP\) ( loại )
Vậy ...
giải phương trình
a) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
b) \(\frac{13}{2x^2+x-21}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
a) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\left(x\ne1\right)\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4}{x^2+x+1}=0\)
\(\Leftrightarrow\frac{1\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4x-4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{3x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{3x}{x^2+x+1}=0\)
=> 3x=0
<=> x=0 (tmđk)
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
1) Giải phương trình
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
b) /7-2x/=x-3 với\(\) \(x\ge\frac{7}{2}\)
2) Giải bất phương trình
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)