Chứng tỏ rằng tổng sau không là số chính phương:S = abc + bca + cab
Chứng tỏ rằng tổng sau không là số chính phương:
A = abc + bca + cab
mình biết làm như vì lý do ngại giải quá nên bạn thông cảm vào đây:GIÚP TÔI GIẢI TOÁn
Để A = abc + bca + cab = 111(a + b + c) = 3.37(a + b + c)
Để A là số chính phương thì a + b + c chia hết cho 3.37
nhưng 3<a + b + c>27 nên a + b + c không chia hết cho 37
Vậy A không là số chính phương.
Chứng tỏ rằng tổng sau không là số chính phương: A= abc+bca+cab ( mỗi số có dấu liên kết trên đầu )
Ta có:
A=abc+bca+cab = (100a+10b+c) + (100b+10c+a)+(100c+10a+b)
=111a+111b+111c
=111(a+b+c)
Để A là số chính phương thì suy ra a+b+c bé nhất phải bằng 111.
Mà a;b;c là số tự nhien bé hơn 10 nên a+b+c<30
và 111>30 nên a+b+c không thể bằng 111
Vậy A không phải là số chính phương
Ta tách đến kết quả: A=111(a+b+c)
Vì a,b,c thuộc N* (vì 3 số trên gạch đầu bạn ạ) => a+b+c thuộc N*
Mà 111 chia hết cho 111
Do đó [111 (a+b+c)] chia hết cho 111
hay A chia hết cho 111
Mà A là số chính phương => A chia hết cho 111^2
Như vậy vì a+b+c thuộc N* (khác 0) nên a+b+c bé nhất phải bằng 111 (*)
Lại thấy a,b,c là các chữ số nên a+b+c nhỏ hơn hoặc bằng 27, trái với (*)
Ctỏ A không phải là số chính phương.
P/s: Tbày theo ý bạn nhé, mik viết một số cái k cần nhưng cho dễ hiểu ý mak ^^
Chỗ "mà A là scp" bạn đổi cho mik thành " Để A là scp" sẽ chuẩn hơn nhé!
Chứng tỏ rằng tổng sau ko là số chính phương : A = abc+bca+cab
A=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương A
A=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương A
Hok tốt !
Chứng minh rằng tổng sau không là số chính phương
A = abc + bca + cab
abc và bca và cab là số tự nhiên
A = abc + bca + cab
=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>A = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> A = 111a + 111b + 111c
=> A= 111( a+b+c )= 37 . 3( a+b + c)
giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
Điều này không xảy ra vì 1 \(\le\) a + b + c \(\le\) 27
A = abc + bca + cab không phải là số chính phương
Chứng tỏ tổng sau không phải là số chính phương A=abc+bca+cab
Chứng tỏ rằng tổng sau không là 1 số chính phương
A=abc+bca+cab
\(A=\overline{abc}+\overline{bca}+\overline{cab}\)
\(A=100a+10b+c+100b+10c+a+100c+10a+b\)
\(A=111a+111b+111c\)
\(A=111\left(a+b+c\right)\)
Với A là số chính phương chia hết cho 111 thì A chia hết cho 12321
nên a+b+c phải chia hết cho 111 và a+b+c khác 0 thì không có số a,b,c thỏa mãn
vậy A không là số chính phương
Chứng tỏ rằng tổng sau không là số chính phương ;
abc + bca = cab
Ta co :
A=abc+bca+cab=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)
=111a+111b+111c
=111(a+b+c)
De A la so chinh phuong
=> a+b+c <111
Ma a,b,c la so tu nhien be hon 10 nen a+b+c<30 va 111>30 nen a+b+c khong the bang 111
Hay A không phải là số chính phương
nho k nha
Ta có : abc+bca=cab
111a+111b=111
111(a+b)=111
a+b=1
Ma 1 khong phai la so chinh phuong
\(\Rightarrow\)abc+bca=cab (dpcm)
chắc chắn đúng luôn
Chứng tỏ rằng \(\overline{abc}+\overline{bca}+\overline{cab}\)=S không là số chính phương
s=abc + bca + cab
S = 100a+10b+c+100b+10c+a+100c+10a+b
S= 111a+111b+111c
S= 111(a+b+c)
ma a;b;c <10
nen S k phai la so chinh phuong
chứng tỏ rằng: abc+bca+cab là một số chính phương
Minh ko biet minh moi chi lop 5xin loi nhe nhung chuc ban may man