Chứng tỏ rằng 4mn+3 và n là hai số nguyên tố cùng nhau, biết n là số nguyên tố lớn hơn 3
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
Các bạn giúp mình bài toán nâng cao này nha
a)Cho n là số tự nhiên. Chứng tỏ rằng 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
b)Cho n là số nguyên tố lớn hơn 3 . Hỏi n^2 + 2018 là số nguyên tố hay hợp số?Vì sao?
Bạn nào trả lời đúng nhất mình sẽ cho 1 tick
chứng tỏ rằng n+3 và 3n+10 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN của n+3 và 3n+10
=>n+3chia hết cho d=>3(n+3) chia hết cho d=>3n+9 chia hết cho d
3n+10 chia hết cho d
=>(3n+10)-(3n+9)chia hết cho d=>1chia hết cho d nên d=1
Vậy n+3vaf 3n+10 nguyên tố cùng nhau
hom nao dang may bai len nho cac chu giai ho
Chứng tỏ rằng 2n+1 và 2n+3 (n thuộc N ) là hai số nguyên tố cùng nhau
Đặt d ϵ Ư( 2n+1; 2n+3) ĐK: d ϵ N*
=> 2n+1 chia hết cho d, 2n+3 chia hết cho d
=> (2n+3)-(2n+1) chia hết cho d
=> 2 chia hết cho d => d ϵ Ư(2) => d ϵ {1;2} (vì d ϵ N*)
Mặt khác, d là ước của 2 số lẻ 2n+1 và 2n+3 nên d=1.
=> Ư(2n+1; 2n+3)=1
Vậy 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
Chứng tỏ rằng: 14n+3 và 21n+4 (n thuộc N) là hai số nguyên tố cùng nhau.
Bài 1:
a) Tìm số nguyên tố biết rằng số đó bằng tổng của hai số nguyên tố và hiệu của hai số nguyên tố
b) Cho P là số nguyên tố lớn hơn 3, biết P + 2 cũng là số nguyên tố. Chứng minh rằng P + 1 chia hết cho 6
c) Cho N là số nguyên tố lớn hơn 3. Hỏi N2 + 2018 là số nguyên tố hay hợp số. Vì sao?
Chứng tỏ rằng với mọi số tự nhiên n, hai số n+2 và 2n+3 là hai số nguyên tố cùng nhau
Gọi d là Ước chung lớn nhất của chúng ta có
n+2 chia hết cho d
2n+3 chia hết cho d
=>n+2-2n+3 chia hết cho d
=>2(n+2)-2n+3 chia hết cho d
=>2n+4-2n+3 chia hết cho d
=>1 chia hết cho d
=> d=1
Vậy ước chung của 2 số trên là 1 nên 2 số đó là 2 số nguyên tố cùng nhau
Gọi d là ƯC (n + 2; 2n + 3) ( d ∈ N ) Nên ta có :
n + 2 ⋮ d và 2n + 3 ⋮ d
<=> 2(n + 2) ⋮ d và 1(2n + 3) ⋮ d
<=> 2n + 4 ⋮ d và 2n + 4 ⋮ d
=> (2n + 4) - (2n + 3) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( n + 2 ; 2n + 3 ) = 1 => n + 2 và 2n + 3 là nguyên tố cùng nhau
Gọi d là ƯCLN (n + 2 ; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow2n+4-\left(2n+3\right)⋮d\)
\(2n+4-2n-3⋮d\)
\(4-3⋮d\)
\(1⋮d\)\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+2;2n+3\right)=1\)
Vậy với mọi số tự nhiên n thì hai số n + 2 và 2n + 3 là hai số nguyên tố cùng nhau.
Cho số tự nhiên n. Chứng tỏ rằng 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.
Gọi UCLN(3n+2,5n+3) la d
=>3n+2 chia hết cho d=>15n+10 chia hết cho d
=>5n+3 chia hết cho d=>15n+9 chia hết cho d
=>(15n+10)-(15n+9) chia hết cho d
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau