\(\frac{2012}{\sqrt{2013}}+\frac{2013}{\sqrt{2012}}>\sqrt{2012}+\sqrt{2013}\)
SO SÁNH \(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\) VÀ \(\sqrt{2013}+\sqrt{2012}\)
A) SO SÁNH \(\sqrt{2013}-\sqrt{2010}\) và \(\sqrt{2012}-\sqrt{2011}\)
B) SO SÁNH \(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\)và \(\sqrt{2013}+\sqrt{2012}\)
SO SÁNH \(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\) VÀ \(\sqrt{2013}-\sqrt{2012}\)
MÌNH_ĐANG_CẦN
THANKS!!!!!!!!!!!!!!!!!!!!!!
A) SO SÁNH \(\sqrt{2013}-\sqrt{2010}\) và \(\sqrt{2012}-\sqrt{2011}\)
B) SO SÁNH\(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\)và \(\sqrt{2013}+\sqrt{2012}\)
THANKS
\(S=\sqrt{1+2010^2+\frac{2010^2}{2011^2}}+\frac{2010}{2011}+\sqrt{1+2011^2+\frac{2011^2}{2012^2}}+\frac{2011}{2012}+\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
Tính \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2013\sqrt{2012}+2012\sqrt{2013}}\)
= \(\frac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\frac{1}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{1}{\sqrt{2012}.\sqrt{2013}\left(\sqrt{2013}+\sqrt{2012}\right)}\)
= \(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2\left(\sqrt{2}+1\right)}}+...+\frac{\left(\sqrt{2013}-\sqrt{2012}\right)\left(\sqrt{2013}+\sqrt{2012}\right)}{\sqrt{2012}\sqrt{2013}\left(\sqrt{2012}+\sqrt{2013}\right)}\)
= \(\frac{\sqrt{2}-1}{\sqrt{2}}+...+\frac{\sqrt{2013}-\sqrt{2012}}{\sqrt{2012}\sqrt{2013}}\)
= \(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\)
= \(\frac{\sqrt{2013}-1}{\sqrt{2013}}=\frac{2013-\sqrt{2013}}{2013}\)
Chứng minh rằng \(\frac{2012}{\sqrt{2013}}\)+\(\frac{2013}{\sqrt{2012}}\)> \(\sqrt{2012}+\sqrt{2013}\)
đặt \(A=\frac{2012}{\sqrt{2013}}+\frac{2013}{\sqrt{2012}};B=\sqrt{2012}+\sqrt{2013}\)
ta có:\(A=\frac{2013-1}{\sqrt{2013}}+\frac{2012+1}{\sqrt{2012}}=\sqrt{2013}-\frac{1}{\sqrt{2013}}+\sqrt{2012}+\frac{1}{\sqrt{2012}}\)
\(\Rightarrow A=\left(\sqrt{2013}+\sqrt{2012}\right)+\left(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)>\sqrt{2012}+\sqrt{2013}=B\)
vậy A>B(đpcm)
Xét hiệu bằng cách lấy vế trái trừ vế phải nhé bạn
SO SÁNH \(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\) VÀ \(\sqrt{2013}+\sqrt{2012}\)
**CHÚ Ý: KHÔNG ĐƯỢC SỬ DỤNG MÁY TÍNH**
cảm ơn các bạn!!!!!!!!!!!!!!!
Tính giá trị của biểu thức:
Q = \(\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}+\frac{1-\sqrt{3}+\sqrt{4}}{1+\sqrt{3}+\sqrt{4}}+\frac{1-\sqrt{4}+\sqrt{5}}{1+\sqrt{4}+\sqrt{5}}+...+\frac{1-\sqrt{2012}+\sqrt{2013}}{1+\sqrt{2012}+\sqrt{2013}}\)
!@#$%^&*()_+\ [];'{}
đầu hàng tại chỗ !
hiiiii
NX \(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}\) =\(\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}-1\right)}{\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}+1\right)^2}\)
=\(\frac{\left(\left(\sqrt{n+1}-\sqrt{n}\right)^2-1^2\right)}{n+1-n-1-2\sqrt{n}}\) \(=\frac{n+1+n-2\sqrt{\left(n+1\right)n}-1}{-2\sqrt{n}}=\frac{2n-2\sqrt{n\left(n+1\right)}}{-2\sqrt{n}}\)
=\(\frac{n-\sqrt{n\left(n+1\right)}}{-\sqrt{n}}=\frac{n}{-\sqrt{n}}+\frac{\sqrt{n\left(n+1\right)}}{\sqrt{n}}=-\sqrt{n}+\sqrt{n+1}\)
thay vao Q ta co
Q= \(-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-...-\sqrt{2012}+\sqrt{2013}=-\sqrt{2}+\sqrt{2013}\)