tìm 2 STN a và b biết a.b = 0 và a+5b =2015
1) Tìm STN a lớn nhất
a) 128 chia hết cho a, 48 chia hết cho a và 192 chia hết cho a
2) Tìm STB b khác 0, biết
a) 300 chia hết cho b, 276 chia hết cho b và 252 chia hết cho b
3) Tìm STN n khác 0, biết
311 : n dư 11 và 289 : n dư 13
4) CMR
2n+1 và 6n + 5 là 2 số nguyên tố cùng nhau
5) Tìm a,b biết
a) a+b=72 và ƯCLN(a,b) = 6
b) a-b=100 và ƯCLN(a,b)= 6
1) Tìm STN a lớn nhất
a) 128 chia hết cho
b, 48 chia hết cho a
và 192 chia hết cho a
2) Tìm STB b khác 0, biết
a) 300 chia hết cho
b, 276 chia hết cho b
và 252 chia hết cho b
3) Tìm STN n khác 0, biết 311 : n dư 11
và 289 : n dư 13
4) CMR 2n+1 và 6n + 5 là 2 số nguyên tố cùng nhau
5) Tìm a,b biết
a) a+b=72 và ƯCLN(a,b) = 6
b) a-b=100 và ƯCLN(a,b)= 6
5, a,
Ta có ƯCLN(a,b)=6 \(\Rightarrow\hept{\begin{cases}a_1.6=a\\b_1.6=b\end{cases}}\) với (a1;b1) = 1
=> a+b = a1.6+b1.6 = 6(a1+b1) = 72
=> a1+b1 = 12 = 1+11=2+10=3+9=4+8=5+7=6+6 (hoán vị của chúng)
Vì (a1,b1) = 1
=> a1+b1 = 1+11=5+7
* Với a1+b1 = 1+11
+) TH1: a1 = 1; b1=11 => a =6 và b = 66
+) TH2: a1=11; b1=1 => a=66 và b = 6
* Với a1+b1 = 5+7
+)TH1: a1=5 ; b1=7 => a=30 và b=42
+)TH2: a1=7;b1=5 => a=42 và b=30
Vậy.......
1) Tìm STN a lớn nhất
a) 128 chia hết cho
b, 48 chia hết cho a
và 192 chia hết cho a
2) Tìm STB b khác 0, biết
a) 300 chia hết cho
b, 276 chia hết cho b
và 252 chia hết cho b
3) Tìm STN n khác 0, biết 311 : n dư 11
và 289 : n dư 13
4) CMR 2n+1 và 6n + 5 là 2 số nguyên tố cùng nhau
5) Tìm a,b biết
a) a+b=72 và ƯCLN(a,b) = 6
b) a-b=100 và ƯCLN(a,b)= 6
AI ĐÚNG MK TẶNG 3 K NHA
1, a=ƯCLN(128;48;192)
2, b= ƯCLN(300;276;252)
3, Gọi n.k+11=311 => n.k = 300
n.x + 13 = 289 => n.x = 276
=> \(n\inƯC\left(300;276\right)\)
4, G/s (2n+1;6n+5) = d (d tự nhiên)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}\Rightarrow6n+5-\left(6n+3\right)⋮d}\)
\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+1 lẻ => 2n+1 không chia hết cho 2
=> d khác 2 => d=1 => đpcm
Tìm a và b biết a+b=-1 và a.b=-12
a+b=-1 => a=-1-b => -a=b+1
a.b=-12 => -a.b=12 => (b+1)b=12
=> b2+b-12=0
=>(b+4)(b-3)=0
=>\(\orbr{\begin{cases}b=-4=>a=3\\b=3=>a=-4\end{cases}}\)
Tìm stn avaf b biết : \(\frac{5a+7b}{6a+5b}=\frac{29}{28}\) và (a;b)=1
TÌM CÁC SỐ TỰ NHIÊN a VÀ b BIẾT :a.b = 360 VÀ ƯCLN ( a.b)=6
Vì ƯCLN(a,b)=6 nên ta có:\(\hept{\begin{cases}a⋮6\\b⋮6\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=6m\\b=6n\\ƯCLN\left(m,n\right)=1\end{cases}}\)
Mà ab=360
\(\Rightarrow\)6m.6n=360
\(\Rightarrow\)36(m.n)=360
\(\Rightarrow\)mn=10
Vì ƯCLN(m,n)=1 nên ta có bảng sau :
m 1 10 2 5
n 10 1 5 2
a 6 60 12 30
b 60 6 30 12
Vậy (a; b)\(\in\){(6;60);(60;6);(12;30);(30;12)}
Vì \(\text{ƯCLN(a;b) }=6\Rightarrow\text{ Đặt }\hept{\begin{cases}a=6m\\b=6n\end{cases}\left(m;n\inℕ^∗\right)};\left(m;n\right)=1\)
=> a.b = 360
<=> 6m.6n = 360
=> mn = 10
Với m;n \(\inℕ^∗;\left(m,n\right)=1\)có 10 = 2.5 = 1.10
=> Lập bảng xét 4 trường hợp
m | 1 | 10 | 2 | 5 |
n | 10 | 1 | 5 | 2 |
a | 6 | 60 | 12 | 30 |
b | 60 | 6 | 30 | 12 |
Vậy các cặp (a;b) thỏa mãn là : (6;60) ; (60;6) ; (12;30) ; (30;12)
mid lớp 5 ahihi
Tìm các số tự nhiên a và b, biết: a.b = 36 và ƯCLN(a,b) = 3
Vậy thì a và b một trong 2 số là 3.
Số còn lại là:
36 : 12 = 3
Vậy số a và b là: 3 và 12.
Mình chỉ xin cách giải thôi nha
Tìm 2 số tự nhiên a và b, biết a.b =2940 và bội chung nhỏ nhất của chúng bằng 210
tìm hai số tự nhiên a và b (a<b) biết a.b = 18 và BCNN(a,b)=6
3;6
ai tích mk lên 880 mk tích lại cho
(a;b) = ab:[a;b] = 18: 6 =3
đặt a =3q ; b =3p (q;p) =1 ; q<p
=> a.b = 3q.3p = 18
=> qp =2 =1.2
=> q =1 => a =3
và p =2 => b =6
Vậy a =3 ; b =6