tìm xy nguyen biet (x+y-2)^2+(y+3)^2=0 tim xy thoa man x^2-6x+10=1/|x-3|+1
a)Tim cap (x,y) nguyen duong thoa man xy=3(y-x)
b)cho 2 so x,y >0 thoa man x+y = 1
Tim GTNN cua M=(x^2+1/y^2)(y^2+1/x^2)
mình biết làm nhưng dài quá bạn tra trên google là đc
tim cac cap so nguyen x y thoa man (x+2)2(y-2)+xy^2+26=0
tim tat ca cac so nguyen x,y thoa man x^3+x^2+2-2y=xy
tim cac cap so nguyen x , y thoa man : 2 . ( xy - 3 ) = x
\(2\left(xy-3\right)=x\)
\(\Leftrightarrow2xy-6=x\)
\(\Leftrightarrow2xy-x=0+6\)
\(\Leftrightarrow x\left(2y-1\right)=6\)
\(\Rightarrow x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow y\in\left\{....\right\}\)
Tim so nguyen duong x,y thoa man dang thuc
x2+xy-2=0
Cho x,y,z nguyen duong thoa man x+y-z+1=0
Tim GTLN cua \(P=\frac{x^3y^3}{\left(x+yz\right)\left(y+xz\right)\left(z+xy\right)^2}\)
Ta có \(\frac{1}{P}=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}{x^3y^3}=\frac{x+yz}{y}\cdot\frac{y+zx}{x}\cdot\frac{\left(z+xy\right)^2}{x^2y^2}\)
\(=\left(\frac{x}{y}+z\right)\left(\frac{y}{x}+z\right)\left(\frac{z}{xy}+1\right)^2=\left[1+\left(\frac{x}{y}+\frac{x}{y}\right)z+x^2\right]\left(\frac{z}{xy}+1\right)^2\ge\left(1+2x+x^2\right)\)\(\left[\frac{4x}{\left(x+y\right)^2}+1\right]^2\)\(=\left(z+1\right)^2\left[\frac{4z}{\left(z-1\right)^2}+1\right]^2=\left[\frac{4z\left(z+1\right)}{\left(z-1\right)^2}+1\right]^2=\left[6+\frac{12}{z-1}+\frac{8}{\left(z-1\right)^2}+z-1\right]^2\)
\(=\left[6+\frac{12}{z-1}+\frac{3\left(z-1\right)}{4}+\frac{8}{\left(z-1\right)^2}+\frac{z-1}{8}+\frac{z-1}{8}\right]\)
Áp dụng BĐT Cosi ta có:
\(\frac{1}{P}\ge\left[6+2\sqrt{\frac{12}{z-1}\cdot\frac{3\left(z-1\right)}{3}}+3\sqrt[3]{\frac{8}{\left(z-1\right)^2}\cdot\frac{z-1}{8}\cdot\frac{z-1}{8}}\right]^2=\frac{729}{4}\)
\(\Rightarrow P\le\frac{4}{729}\). dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=2\\z=5\end{cases}}\)
tim cap so nguyen (x,y) thoa man: x+y+xy=2
Tim so nguyen x,y biet
(x+1)^2+(y-1)^2=0
(x+3)×(y+1)=3
xy-2x=5
(x+3).(y+1)=3
--->x+3,y+1 thuộc Ư(3)={1,3,-1,-3}
Ta có bảng sau
x+3 1 -1
y+1 3 -3
y 2 -4
x -2 -4
--->(x,y) thuộc(-2,2),(-4,-4)
tim cac cap so nguyen ( x ; y ) thoa man : xy - x - y = 2
\(xy-x-y=2\)
\(\Rightarrow xy-x-y+1=3\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=3\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=3\)
Tự xét được chứ :">
bài này thiếu điều kiện của x,y phải là x,y thuộc z