Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thuy lien
Xem chi tiết
can xuan thai
Xem chi tiết
Dang Cuong Thinh
Xem chi tiết
Dang Cuong Thinh
27 tháng 2 2020 lúc 21:48

cac bn giup mk vs nhe mk dang can gap

Khách vãng lai đã xóa
Dang Cuong Thinh
Xem chi tiết
Maéstrozs
Xem chi tiết
Kiệt Nguyễn
14 tháng 3 2020 lúc 9:03

a) Ta có AH = AD và AB \(\perp\)DH nên AB là đường trung trực của đoạn thẳng DH

=> BD = BH => \(\Delta\)DBH cân

Vậy  \(\Delta\)DBH cân (đpcm)

b) D là trung điểm của AC nên AD = \(\frac{1}{2}\)AC

=> AC = 2AD = 2AB = 2.5 = 10 (cm) => AB = 5 (cm)

\(\Delta\)ABC vuông tại A nên AB2 + AC2 = BC2 (theo định lý Pythagoras)

Thay số: 52 + 102 = BC2 => BC2 =125 => BC = \(\sqrt{125}\)

Vậy BC = \(5\sqrt{5}\)cm

c) Cung tròn tâm D có bán kính bằng BC nên BC = DE ( DE là bán kính của đường tròn tâm D)

Từ giả thiết suy ra CD = DA = AH => AC = DH

Xét \(\Delta\)ABC và \(\Delta\)HED có:

     AC = HD (cmt)

    BC = ED (cmt)

Do đó  \(\Delta\)ABC = \(\Delta\)HED ( 2cgv)

=> AB = HE (hai cạnh tương ứng)

Mà AB = AD (cùng bằng nửa AC)

=> AD = HE (đpcm)

d) Dễ thấy \(\Delta\)ABD và \(\Delta\)ABH vuông cân nên ^DBA = ^ABH = 450

=> ^DBH = 900

Dễ chứng minh: ^EHB = ^CDB = 1350

Xét \(\Delta\)CDB và \(\Delta\)EHB có:

   CD = HE (cùng bằng AD)

   ^EHB = ^CDB (cmt)

   BD = BH (câu a)

Do đó ​\(\Delta\)​CDB = \(\Delta\)EHB (c.g.c)

=> BC = BE (hai cạnh tương ứng) (1)

và ^EBH = ^CBD

=> ^DBH = ^DBE + ^EBH = ^DBE + ^CBD = ^EBC = 90(2)

Từ (1) và (2) suy ra BEC vuông cân tại B (đpcm)

Khách vãng lai đã xóa
Nguyễn Quốc Khánh
Xem chi tiết
Lê Thị Kiều Trâm
Xem chi tiết
congdanh le
Xem chi tiết
Triêu Mai Hoa
Xem chi tiết