Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Thúy An
Xem chi tiết
Quỳnh Trâm
19 tháng 5 2018 lúc 23:01

\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)

Hàn Băng Nhi
25 tháng 5 2018 lúc 20:54

Đúng rầu đấy

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 9 2018 lúc 9:42

Chọn C.

Ta có: AB + BC = AC nên  ba điểm A; B; C  thẳng hàng và B nằm giữa A; C

Khi đó

bach nhac lam
Xem chi tiết
Nguyễn Huy Thắng
19 tháng 11 2019 lúc 20:42

a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)

Khách vãng lai đã xóa
Nguyễn Huy Thắng
19 tháng 11 2019 lúc 20:49

b thiếu đề

Khách vãng lai đã xóa
bach nhac lam
19 tháng 11 2019 lúc 12:37

@tth_new, @Nguyễn Việt Lâm, @No choice teen, @Akai Haruma

giúp e vs ạ! Cần gấp

Thanks nhiều

Khách vãng lai đã xóa
Kim Ngọc Yên
Xem chi tiết
Vũ Hoàng Anh
22 tháng 8 2016 lúc 20:56

Vì ab=2cm,bc=3cm,ca=5cm mà ab+bc=ca 

=>a,b,c cùng nằm trên một đoạn thẳng hay a,b,c thẳng hàng

pham quynh bang
Xem chi tiết
Nguyễn Phương Hoa
Xem chi tiết
Nguyen Ngoc Huyen
Xem chi tiết
Trần Hữu Hiếu
20 tháng 4 2023 lúc 21:29
Trên tia Ax lấy hai điểm B, C sao cho AB = 3cm, AC = 7cm. a. Trong ba điểm A, B, C điểm nào nằm giữa hai điểm còn lại ? Vì sao ? b. Tính độ dài đoạn thẳng BC c)gọi I là trung điểm của đoạn thẳng AB.tính độ dài đoan thẳng IC
 
Lê Bảo Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 10 2021 lúc 16:25

1, Áp dụng BĐT cosi cho a,b,c>0

\(ab+bc\ge2\sqrt{ab^2c}=2b\sqrt{ac}\\ bc+ca\ge2\sqrt{abc^2}=2c\sqrt{ab}\\ ca+ab\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow2\left(ab+bc+ac\right)\ge2\left(b\sqrt{ac}+a\sqrt{bc}+c\sqrt{ab}\right)\\ \Leftrightarrow ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)

Nguyễn Hoàng Minh
10 tháng 10 2021 lúc 16:27

\(2,\)

Ta có

 \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\\ \Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\\ \Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Áp dụng BĐT cm ở câu 1

Suy ra đpcm

 

đoàn thị minh thư
Xem chi tiết
Phương Tuyết
Xem chi tiết