tìm x và y:
(x-2013)^2014 + (y-2014)^2014=0
tìm x, y
|x-y-5|+2013.(y-3)2014= 0
Tìm x,y biết: |3x-27|^2013 +(y^2-9)^2014=0
x^2013+y^2013=x^2014+y^2014=x^2015+y2015 tinh x^2016+y^2016
Tìm các giá trị x và y thỏa mãn |2x-27|^2013+(3y+10)^2014=0?
vì |2x-27| >=0 với mọi x
=> |2x-27|^2013 >=0 với mọi x
(3y+10)^2014 >=0 với mọi y
=> dấu = xảy ra <=>2x-27
3y+10
<=>x= 27/2
y= -10/3
học tốt
Tìm x,y biết |x+1|3 + (y+2013)2014 = 0
ð |x+1|3=(y+2013)2014(=0)
Ta có: |x+1|3 = |x+1|*|x+1|*|x+1|=0
ð |x+1|=0
ð x+1=0
ð x=0-1
ð x=-1
Ta có: (y+2013)2014=(y+2013)*…*(y+2013)=0
ð y+2013=0
ð y=0-2013
ð y=-2013
Vậy x=-1 và y=-2013
Vì |x+1| > = 0 với mọi x nên |x+1 | 3 >= 0
(y+ 2013)2014 >= 0 với mọi y
==> |x+1| 3 + (y+ 2013)2014 = 0 khi x+ 1= 0 và y + 2013 = 0
==> x = -1 và y = -2013
chứng minh rằng:(xy-1).(x^2013+y^2014)-(xy+1).(x^2013-y^2014) là 1 số chẵn
phân tích biểu thức .ta có:
x^2014.y - x^2013 + x.y^2015 - y^2014 - x^2014.y - x^2014.y - x^2013 + x.y^2015 + y^2014
= 2.x.y^2015 - 2.x^2013
= 2 (x.y^2015 - x^2013) là số chẵn
\(\Rightarrow\)đpcm
xin lỗi bạn vì lời giải lúc nãy của minh viết thiếu .lời giải này là đầy đủ nhất
Tìm x biết : x + y/ 2012 = x. y /2013 = x - y /2014 .
x-y/2014=x+y/2012=x-y+x+y/2014+2012=2x/2026=x/1013 (theo tc dãy tỉ số bằng nhau)
ta lại có: x+y/2012=x.y/2013=x/2013 (chứng minh trên) => y=1
x-y/2014=x.y/2013=x/2013 => x-1/2014=x/2013
thì (x-1).2013=2014x
2013x-2013=2014x
-1x=2013 thì x=-2013
Tìm x biết:
x-2014-2015/2013 + x-2013-2015/2014 + x-2014-2013/2015=3
\(x-2014-\frac{2015}{2013}+x-2013-\frac{2015}{2014}+x-2014-\frac{2013}{2015}=3\)
\(\Rightarrow\left(x+x+x\right)+\left(-2014-2014\right)-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)
\(3x-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)
\(3x=3+2013+\frac{2015}{2013}+\frac{2015}{2014}+\frac{2013}{2015}\)
bạn ơi bài này số lớn quá bạn sử dungjmays tính rồi tự tính nhé
Đáp án của bạn Hoàng Đình Đại sai rùi nhưng dù sao cx cảm ơn nhiều
cho \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\) tính \(A=x^{2014}-y^{2014}+1\)
Ta có: \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)
\(\Leftrightarrow\left(x-\sqrt{x^2+2013}\right)\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-y-\sqrt{y^2+2013}=x-\sqrt{x^2+2013}\)
⇔\(x+y=\sqrt{x^2+2013}-\sqrt{y^2+2013}\)(1)
Nhân liên hợp tương tự nhân \(y-\sqrt{y^2+2013}\)vào hai về rút được
\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\)(2)
Cộng vế theo vế (1)(2) ta được \(x+y=0\Rightarrow x=-y\)
Thay vào \(A=\left(-y\right)^{2014}-y^{2014}+1=1\)