+++...+
\(sosánh\frac{3}{2}và\frac{1212}{3232}\)
\(\frac{3}{2}>1;\frac{1212}{3232}< 1\)\(\Rightarrow\frac{3}{2}>\frac{1212}{3232}\)
Ta có:
\(\frac{3}{2}>\frac{2}{2}=1.\)
Mà \(\frac{1212}{3232}< \frac{3232}{3232}=1.\)
=>\(\frac{3}{2}>1>\frac{1212}{3232}\)
Vậy \(\frac{3}{2}>\frac{1212}{3232.}\)
Ko cần tk mk đâu mk tl cho vui thôi nhá.
-Chúc mọi người vui vẻ-
\(\frac{1212}{3232}\)\(=\frac{3}{8}\)
\(\frac{3}{2}>1\)
\(\frac{3}{8}< 1\)
\(\Rightarrow\frac{3}{2}>\frac{3}{8}\)
1414 ; 3232 ; 1 ; 1212 sắp xếp theo thứ tự từ bé đén lớn trình bày và lấy mẫu số chung là 4 nha mn
1111+1212+1313+1414+1515+1616 / 2020+2121+2222+2323+2424+2525 =?
\(\frac{2323+1313+1414+1515+1616}{4141+2222+2323+2424+2525}\)
=\(\frac{8181}{13635}\)
1010 + 1111 +1212 + 1313 +1414 + 1515
2020 + 2121 + 2222 + 2323 + 2424 + 2525
\(\frac{1010+1111+1212+1313+1414+1515}{2020+2121+2222+2323+2424+2525}=\frac{10\times101+11\times101+12\times101+13\times101+14\times101+15\times101}{20\times101+21\times101+22\times101+23\times101+24\times101+25\times101}=\frac{101\times\left(10+11+12+13+14+15\right)}{101\times\left(20+21+22+23+24+25\right)}\)
\(=\frac{10+11+12+13+14+15}{20+21+22+23+24+25}=\frac{75}{135}=\frac{5}{9}\)
1010+1111+1212+1313+1414+1515= 7575
2020+2121+2222+2323+2424+2525= 13635
Bài 5:
a,1111+1212+1313+1414+1515+1616/2020+2121+2222+2323+2424+2525
b,5.4:0,4x1420+4,5x780x3/3+6+9+12+.....+24+27
c,7,2:2x28,6+1,43x2x64/2+2+4+6+10+16+...110
Tính nhanh:
-5/11.(2222/1010 + 2222/1515 + 2222/2121 + 2222/2828 +2222/3636 + 2222/4545
bài 1: Tính biểu thức 1 cách hợp lý\(\frac{1010+1111+1212+1313+1414+1515+1616+1717}{2020+2121+2222+2323+2424+2525+2626+2727}\)
bài 2: Tím y là số tự nhiên
\(2< \)( \(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\)):5 x y \(< \frac{5}{6}\)
\(\frac{1010+1111+1212+1313+1414+1515+1616+1717}{2020+2121+2222+2323+2424+2525+2626+2727}\)
\(=\frac{101.10+101.11+...+101.17}{101.20+101.21+...+101.27}\)
\(=\frac{101.\left(10+11+...+17\right)}{101.\left(20+21+...+27\right)}\)
\(=\frac{108}{188}\)
\(=\frac{27}{47}\)
\(2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right)\cdot5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{20}{120}+\frac{16}{120}+\frac{9}{120}+\frac{5}{120}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{5}{12}:5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{1}{12}.y>\frac{5}{6}\)
Đặt :\(\frac{1}{12}.y=2\Rightarrow y=2:\frac{1}{12}=24\)
\(\frac{1}{12}.y=\frac{5}{6}\Rightarrow y=\frac{5}{6}:\frac{1}{12}=10\)
\(\Rightarrow24>y>10\)
\(\Rightarrow y\in\left\{11;12;...;23\right\}\)
Bài 3. Tính nhanh:
\(\dfrac{1212}{1515}\) + \(\dfrac{1212}{3535}\) + \(\dfrac{1212}{6363}\) + \(\dfrac{1212}{9999}\)
\(\dfrac{1212}{1515}+\dfrac{1212}{3535}+\dfrac{1212}{6363}+\dfrac{1212}{9999}\)
=\(\dfrac{12}{15}+\dfrac{12}{35}+\dfrac{12}{63}+\dfrac{12}{99}\)
=\(\dfrac{16}{11}\)
Giải:
\(\dfrac{1212}{1515}+\dfrac{1212}{3535}+\dfrac{1212}{6363}+\dfrac{1212}{9999}\)
\(=\dfrac{12}{15}+\dfrac{12}{35}+\dfrac{12}{63}+\dfrac{12}{99}\)
\(=12.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}\right)\)
\(=12.\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\right)\)
\(=6.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=6.\left(\dfrac{1}{3}-\dfrac{1}{11}\right)\)
\(=6.\dfrac{8}{33}\)
\(=\dfrac{16}{11}\)
\(=\dfrac{12}{15}+\dfrac{12}{35}+\dfrac{12}{63}+\dfrac{12}{99}=12\cdot\left[\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}\right]=12\cdot\left[\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+\dfrac{1}{9\cdot11}\right]=12\cdot\dfrac{1}{2}\cdot\left[\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right]=6\cdot\left[\dfrac{1}{3}-\dfrac{1}{11}\right]=6\cdot\dfrac{8}{33}=\dfrac{48}{33}=\dfrac{16}{11}\)
Rút gọn 102102/405405
Lời giải:
$\frac{102102}{405405}=\frac{1001\times 102}{1001\times 405}=\frac{102}{405}=\frac{3\times 34}{3\times 135}=\frac{34}{135}$
Iiiri did we get our first Christmas gift today at
tính nhanh:
\(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
= \(\frac{12}{15}\) +\(\frac{12}{35}\)+\(\frac{12}{63}\)+\(\frac{12}{99}\)
= 12 x (\(\frac{1}{15}\)+\(\frac{1}{35}\)+\(\frac{1}{63}\)+\(\frac{1}{99}\))
= 12 x ( \(\frac{1}{3x5}\)+\(\frac{1}{5x7}\)+\(\frac{1}{7x9}\)+\(\frac{1}{9x11}\))
= 12 x \(\frac{1}{2}\) x ( \(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{9}\)+\(\frac{1}{9}\)-\(\frac{1}{11}\))
= 6 x ( \(\frac{1}{3}\) - \(\frac{1}{11}\))
= 6 x \(\frac{8}{33}\)
= \(\frac{48}{33}\)=\(\frac{16}{11}\)
Nhớ tk nha
\(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
\(=1212.\left(\frac{1}{15.101}+\frac{1}{35.101}+\frac{1}{63.101}+\frac{1}{99.101}\right)\)
\(=12.101.\frac{1}{101}.\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=6.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=6.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=6.\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=6.\left(\frac{11}{33}-\frac{3}{33}\right)\)
\(=6.\frac{8}{33}\)
\(=\frac{16}{11}\)