Cho\(\hept{\begin{cases}x,y>0\\x^2+y^2+z^2\le x+y\end{cases}}\)Tìm Max A=x+3y
Biểu diễn hình học tập nghiệm của các bất phương trình bậc nhất hai ẩn sau:
a,\(\hept{\begin{cases}2x-1\le0\\-3x+5\le0\end{cases}}\)
b,\(\hept{\begin{cases}3-y< 0\\2x-3y+1>0\end{cases}}\)
c,\(\hept{\begin{cases}x-2y< 0\\x+3y>-2\end{cases}}\)
d,\(\hept{\begin{cases}3x-2y-6\ge0\\2\left(x-1\right)+\frac{3y}{2}\le4\\x\ge0\end{cases}}\)
e,\(\hept{\begin{cases}x-y>0\\x-3y\le-3\\x+y>5\end{cases}}\)
f,\(\hept{\begin{cases}x-3y< 0\\x+2y>-3\\y+x< 2\end{cases}}\)
Giải hệ phương trình:
1.\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{cases}}\)
2.\(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{cases}}\)
3.\(\hept{\begin{cases}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{cases}}\)
4.\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)
5. \(\hept{\begin{cases}2x^3+3x^2y=5\\y^3+6xy^2=7\end{cases}}\)
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
A CHỊ NÀO GIỎI GIẢI KĨ GIÚP E VỚI
MAI E ĐI HOK RỒI
EM SẼ TIXKS CHO
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
E MỚI HOK HỆ NÊN CHƯA GIẢI ĐC
A CHI NÀO GIỎI GIẢI KĨ GIÚP E
E SẼ TICK CHO
Ai giỏi toán giải giúp mình mấy hệ phương trình
1.\(\hept{\begin{cases}\left|x-1\right|-\left|y-5\right|=1\\y=5+\left|x-1\right|\end{cases}}\)
2.\(\hept{\begin{cases}2x^3+3yx^2=5\\y^3+6xy^2=7\end{cases}}\)
3.\(\hept{\begin{cases}x-1=\left|2y-1\right|\\y-1=\left|2z-1\right|\\z-1=\left|2x-1\right|\end{cases}}\)
4.\(\hept{\begin{cases}x^2+xy+y^2=7\\y^2+yz+z^2=28\\x^2+xz+z^2=7\end{cases}}\)
5.\(\hept{\begin{cases}\left|x-1\right|+y=0\\x+3y-3=0\end{cases}}\)
\(\hept{\begin{cases}x^2+y^2+xy=3\\xy+3x^2=4\end{cases}}\)
Giải hệ phương trình:
a)\(\hept{\begin{cases}2x+3y=9\\x-3=y-2\end{cases}}\)
b)\(\hept{\begin{cases}2x+3y+z=81\\x+2y-z=-2\\x-y=z-2y\end{cases}}\)
GIẢI CÁC PHƯƠNG TRÌNH:
A) \(\hept{\begin{cases}x+y=5\\\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}=2}\end{cases}}\)
B) \(\hept{\begin{cases}x+y+\frac{x}{y}=9\\\left(x+y\right)\frac{x}{y}=20\end{cases}}\)
C) \(\hept{\begin{cases}\left|x-1\right|+\left|y-2\right|=1\\\left|x-1\right|+3y=3\end{cases}}\)
D) \(\hept{\begin{cases}x-2y=7\\x^2-y^2+2x+2y+4=0\end{cases}}\)
E) \(\hept{\begin{cases}xy+x+y=19\\x^2y+xy^2=84\end{cases}}\)
F) \(\hept{\begin{cases}2x^3=y+1\\2y^3=x+1\end{cases}}\)
G) \(\hept{\begin{cases}5xy=6\left(x+y\right)\\7yz=12\left(y+z\right)\\3zx=4\left(x+z\right)\end{cases}}\)
H) \(\hept{\begin{cases}\frac{4x^2}{4+x^2}=y\\\frac{4y^2}{4+y^2}=z\\\frac{4z^2}{4+z^2}=x\end{cases}}\)
\(C,\hept{\begin{cases}\left|x-1\right|+\left|y-2\right|=1\\\left|x-1\right|+3y=3\left(#\right)\end{cases}}\)
\(\Rightarrow3y-\left|y-2\right|=2\)(1)
*Nếu y > 2 thì
\(\left(1\right)\Leftrightarrow3y-y+2=2\)
\(\Leftrightarrow y=0\)(Loại do ko tm KĐX)
*Nếu y < 2 thì
\(\left(1\right)\Leftrightarrow3y-2+y=2\)
\(\Leftrightarrow y=1\)(Tm KĐX)
Thay y = 1 vào (#) được \(\left|x-1\right|+3=3\)
\(\Leftrightarrow x=1\)
Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(A,ĐKXĐ:x\left(y+1\right)>0\)
\(\hept{\begin{cases}x+y=5\left(1\right)\\\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}=2\left(2\right)\end{cases}}\)
Giải (2)
Có bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)
Nên \(\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y+1\)
Thế x = y + 1 vảo pt (1) được
\(y+1+y=5\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2+1=3\)
Thấy x = 3 ; y = 2 thỏa mãn ĐKXĐ
Vậy hệ có ngihiemej \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
\(B,ĐKXĐ:y\ne0\)
Từ \(pt\left(2\right)\Rightarrow x\ne0;-y\)
Đặt \(\hept{\begin{cases}x+y=a\\\frac{x}{y}=b\end{cases}\left(a;b\ne0\right)}\)
Hệ trở thành\(\hept{\begin{cases}a+b=9\\ab=20\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=9-b\\\left(9-b\right)b=20\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=9-b\\9b-b^2=20\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=9-b\\b^2-9b+20=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=9-b\\b=5\end{cases}\left(h\right)\hept{\begin{cases}a=9-b\\b=4\end{cases}}}\)
*Với \(\hept{\begin{cases}a=9-b\\b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=4\\b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\\frac{x}{y}=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x=5y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6y=4\\x=5y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{10}{3}\end{cases}}\left(TmĐKXĐ\right)\)
Trường hợp còn lại bạn làm tương tự
giải hệ phương trình
a,\(\hept{\begin{cases}2x^2+xy=3x\\2y^2+xy=3y\end{cases}}\)b,\(\hept{\begin{cases}y^2=x^3-3x^2+2x\\x^2=y^3-3y^2+2y\end{cases}}\)
c,\(\hept{\begin{cases}3x+y=\frac{1}{x^2}\\3y+x=\frac{1}{y^2}\end{cases}}\)
d,\(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
Thật là trừ cho nhau không ạ bạn phải tìm x và y vì đây là một bài phương trình
giải hệ phương trình:
a)\(\hept{\begin{cases}x^2+y^2+z^2=8\\xy+yz+xz=4\\x+y+z=4\end{cases}}\)
b)\(\hept{\begin{cases}x^4+x^3y+9y=y^3x+x^2y^2\\xy^3-x^4=7\end{cases}}\).