chứng minh rằng
B=3+3^3+3^5+3^7+...+3^29 chia hết cho 273
Cho A=3+3^3+3^5+3^7+...+3^27+3^29.Chứng tỏ rằng A chia hết cho 273
Để một số là bội của 273 <=> số đó chia hết 273
= (3 + 33 + 35) + (37 + 39 + 311) + ... ( 325 + 327 + 329)
= 273 + 36(3 + 33 + 35) +...+ 324 (3 + 33 + 35)
= 273 + 36 . 273 + ... + 324 . 273
= 273(1 + 36 + ...) chia hết 273
Chứng minh 3+33+35+...+329 chia hết cho 273
mình nè
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
cho B=3+33+35+...+329 chứng minh rằng B chia hết cho 273?
mình sẽ hướng dãn bạn
bạn có thể ghép các cặp số hạng với nhau
rồi rút số bé nhất ra tính tổng
cứ làm như thế đến khi đc tổng là 273
B=(3+33+35)+(37+39+311)...(325+327+329)
B=273+36(3+33+35)...+324(3+33+35)
B=273+36.273...324.273
B=273.(36....324)\(⋮\)273
\(\rightarrow\)B\(⋮\)273
1/a/ Cho A=5+52+53+...+58
Chứng minh A chia hết cho 30
b/Cho B=3+33+35+...+329
Chứng minh B chia hết cho 273.
chứng tỏ rằng
giá trị của biểu thức A = 5 + 5 ^ 2 + 5 ^ 3 + ...........+ 5 ^ 8 chia hết cho 30
giá trị của biểu thức B = 3 + 3 ^ 3 + 3 ^ 5 + 3 ^ 7 + ..........+ 3 ^ 29 chia hết cho 273
Ta có : A = 5 + 52 + 53 + ..... + 58
=> A = (5 + 52) + (53 + 54) + ..... + (57 + 58)
=> A = (5 + 52) + 52(5 + 52) + ..... + 56(5 + 52)
=> A = 30 + 52.30 + .... + 56.30
=> A = 30(1 + 52 + .... + 56)
Vì (1 + 52 + .... + 56) là số nguyên
Vậy A = 30(1 + 52 + .... + 56) chia hết cho 30
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
CHUNG MINH 3+3^3+3^5+...+3^29 CHIA HẾT CHO 273
B =\(3+3^3+3^5+.....+3^{29}\) chia hết cho 273
\(B=\left(3+3^3+3^5\right)+...+\left(3^{27}+3^{28}+3^{29}\right)\)
\(=1.\left(3+3^3+3^5\right)+3^6.\left(3+3^3+3^5\right)+...+3^{26}.\left(3+3^3+3^5\right)\)
\(=\left(3+3^3+3^5\right)\left(1+3^6+...+3^{26}\right)\)
\(=\left(1+3^6+...+3^{26}\right).273\)chia hết cho 273.
chứng tỏ rằng
giá trị biểu thức A = 5 + \(5^2+5^3+....+5^8\) chia hết cho 30
giá trị của biểu thức B = \(3+3^3+3^5+3^7+....+3^{29}\)chia hết cho 273
bai 1 (5+52) +....(57+58)
=5.(5+52) +54.(5+52) + 57(5+52)
=5.30 +54 .30 +57 .30
=30.(5.54.57) chia hết cho 30
bài 2
(3+33+35) +...(327+328+329)
=3.(3+33+35) +.....+328.(3+33 +35)
=3.273+...+328.273
=273.(3+ ......+328) chia hết cho 273
Cho A = 3 + 33 + 35 + 37 +............+ 329
Chứng tỏ A chia hết cho 273
A=\(3+3^3+3^5+3^7+...+3^{29}\)
có tất cả số số hạng là:(29-1):2+1=15(số hạng)chia hết cho 3
A=\(\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{25}+3^{27}+3^{29}\right)\)
A=\(\left(3+3^3+3^5\right)+3^6.\left(3+3^3+3^5\right)+...+3^{24}.\left(3+3^3+3^5\right)\)
A=\(273.\left(1+3^6+...+3^{24}\right)\)chia hết cho 273(vì 283 chia hết cho 273)