CMR: nếu tổng của 3 số TN liên típ là 1 số lẻ thì tik của chúng chia hết cho 24.
CMR: Nếu tổng của 3 số tự nhiên liên tiếp là một số lẻ thì tích của chúng chia hết cho 24.
Câu hỏi của Roronoa Zoro - Toán lớp 6 - Học toán với OnlineMath
CMR : nếu tổng của 3 số tự nhiên liên tiếp là 1 số lẻ thì tích 3 số đó chia hết cho 24.
Gọi tổng 3 số tự nhiên liên tiếp là : x + ( x + 1 ) + ( x + 2 ) = 3x + 3
Mà 3x + 3 là số lẻ < = > x là số chẵn hay x chia hết cho 2 ( 1 )
Tương tự , ta có tích của chúng là : x. ( x + 1 ) x ( x + 2 ) = x3 x 3 chia hết cho 3
Từ ( 1 ) <=> x3 chia hết cho 23 ( chia hêt cho 8 )
Vậy với x + ( x + 1 ) (x + 2 ) là số lẻ thì x . ( x + 1 ) x ( x + 2 ) chia hết cho 24
Gọi tổng 3 số tự nhiên liên tiếp là : x + ( x + 1 ) + ( x + 2 ) = 3x + 3
Mà 3x + 3 là số lẻ < = > x là số chẵn hay x chia hết cho 2 ( 1 )
Tương tự , ta có tích của chúng là : x. ( x + 1 ) x ( x + 2 ) = x3 x 3 chia hết cho 3
Từ ( 1 ) <=> x3 chia hết cho 23 ( chia hêt cho 8 )
Vậy với x + ( x + 1 ) (x + 2 ) là số lẻ thì x . ( x + 1 ) x ( x + 2 ) chia hết cho 24
1. Chứng minh rằng nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chúng chia hết cho 24
gọi số ở giữa là n thì ta có (n-1)+n+(n+1)=3n là số lẻ do đó n cũng là một số lẻ vậy:
(n-1) và (n+1) là 2 số chẵn liên tiếp(đã chia hết cho 2) thì trong chúng có 1 chữ số chia hết cho 4;
:
trong ba chữ số tự nhiên liên tiếp ta lai luôn có 1 chữ số chia hết cho 3
vậy tích của ba sooschia hết cho 2x4x3=24 cm xong
nếu tổng 2 số tn là số lẻ thì tích của chúng chia hết cho 2
tổng 2 STN là số lẻ => sẽ có 1 số chẵn, 1 số lẻ
mà chẵn * lẻ = chẵn
nên tổng 2 STN liên tiếp lẻ thì tích chia hết cho 2
1, CMR: tổng của 3 số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp thì chia hết cho 5
2,CMR:
+ tổng của 3 số chẵn liên tiếp thì chia hết cho 6
+ tổng của 3 số lẻ liên tiếp thì không chia hết cho 6
+ tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5
1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3
Vậy ...
Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4
Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5
Vậy ...
2.
+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4
Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6
mà a là số chẵn nên 3a \(⋮\) 6
\(\Rightarrow\) 3a+6\(⋮\) 6
Vậy ....
+) ngược lại ý đầu
+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4
Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a
mà a là số chẵn nên 5a \(⋮\) 10
\(\Rightarrow\) 5a\(⋮\) 10
Vậy ....
+) ngược lại ý 3
CMR: Nếu 2 số TN a và b có tổng chia hết cho 3 thì tổng các lập phương của chúng cũng chia hết cho 3
Chứng minh rằng: Nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chubgs chia hết cho 24
Vì tổng 3 số tự nhiên liên tiếp là 1 số lẻ => trong 3 số đó có 2 số chẵn và 1 số lẻ
Gọi 3 số đó là 2k+2; 2k+3; 2k+4 (k thuộc N)
Tích 3 số trên là: (2k+2).(2k+3).(2k+4)
Vì (2k+2).(2k+3).(2k+4) là tích 3 số tự nhiên liên tiếp nên (2k+2).(2k+3).(2k+4) chia hết cho 3 (1)
Do (2k+2).(2k+4) là tích 2 số chẵn liên tiếp nên (2k+2).(2k+4) chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 => (2k+2).(2k+3).(2k+4) chia hết cho 24
=> đpcm
1. Chứng minh rằng nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chúng chia hết cho 24
2. Tìm số tự nhiên nhỏ nhất . Biết rằng khi chia số này cho 29 ta có số dư là 5 khi chia cho 31 ta có số dư là 28
chứng minh rằng nếu tổng 3 số tự nhiên liên tiếp có tổng là một số lẻ thì tích của 3 số đó chia hết cho 24
Gọi tổng 3 số tự nhiên liên tếp là : x+(x+1)+(x+2)=3x+3
Mà 3x+3 là số lẻ\(\Leftrightarrow\)x là số chẵn hay x chia hết cho 2 (1)
Tương tự, ta có tích của chúng là: x.(x+1).(x+2)=x3.3 chia hết cho 3
Từ (1)\(\Rightarrow\)x3 chia hết cho 23 (chia hết cho 8)
Vậy với x+(x+1)+(x+2) là số lẻ thì x.(x+1).(x+2) chia hết cho 24
* Mình giải theo dấu hiệu chia hết cho 24 đó bạn. Số nào vùa chia hết cho 3 vừa chia hết cho 8 thì chia hết cho 24